当前位置: X-MOL首页全球导师 国内导师 › 方海涛

个人简介

1990-1994:哈尔滨工业大学 应用化学系 电化学专业 学士学位 1994-1996:哈尔滨工业大学 应用化学系 应用化学专业 硕士学位 1996-2001:哈尔滨工业大学 材料科学与工程学院 材料学专业 博士学位 2001-2003:中科院金属研究所 博士后 2003.12-2009.11:哈尔滨工业大学 材料物理与化学系 副教授 2004.7-2004.12:中科院金属研究所 青年访问学者 2007.10-2007.12:加拿大西安大略大学 化学系 访问学者 2009.11-至今:哈尔滨工业大学 材料物理与化学系 教授、博士生导师 2013.12-2014.11:美国劳伦斯伯克利国家实验室 访问学者 2017.1-2018.2:美国劳伦斯伯克利国家实验室 访问学者 获得2011年度黑龙江省自然科学二等奖,本人排名第2 J Mater Chem A、Carbon、Joule、Small、Adv Funct Mater、ACS Nano、Chem Mater、J Phys Chem C、Mater Lett、Mater Res Bull、J Appl Phys、J Electrochem Soc、 Int J Hydrogen Energy、Appl Surf Sci等刊物邀请审稿 国家自然科学基金通讯评议人 荣誉称号 入选2008年度国家教育部新世纪优秀人才支持计划 2002年度哈工大优秀博士毕业论文 科研项目 国家自然科学基金(面上),铂/氧化石墨烯/二氧化钛基二极管室温下容湿的氢敏特性与机理(52372142),2024.01~2027.12,负责人 部委联合基金重点项目,微米孔阵列电极技术,在研,负责人 校企联合技术创新中心重点项目,锂离子电池过放电失效机理与防护技术研究,负责人 黑龙江省科教强省科技创新项目,金属氧化物纳米管阵列气体传感器的研究,负责人 国家自然科学基金(面上),基于SEI膜演化动力学和理化性质研究高电位正极材料LiNi0.5Mn1.5O4表面改性作用机理(51272051),2013.1~2016.12,负责人 哈尔滨优秀学科带头人项目,石墨烯包覆改性高电位LiNi0.5Mn1.5O4尖晶石的制备及其电化学脱嵌锂性能与机理(RC2012XK017008),2012.05~2015.05,负责人 教育部博士点基金(博导类),基于含Ti聚合物前躯体分解制备介孔二氧化钛/石墨烯复合材料及其电化学储放锂性能(20112302110014),2012.1~2014.12,负责人 国家自然科学基金(面上),RuO2/TiO2复合纳米管阵列的制备及其高倍率电化学储放锂性能(50872026),2009.1~2011.12,负责人 国家自然科学基金(青年基金),二氧化锡包覆碳纳米管一维纳米复合材料室温氢敏性能与机理 (50602011), 2007.1~2009.12,负责人 黑龙江省自然科学基金,金属氧化物包覆碳纳米管复合材料的氢敏特性 (E200517),2006.1~2007.12,负责人 黑龙江省博士后基金,碳纳米管电化学氧化行为的研究,2004~2006,负责人 中国博士后科学奖励基金,2001年,负责人 中国科学院王宽诚科学奖励基金,2002年,负责人 辽宁省博士启动基金,纳米碳管电极电化学储氢研究(10200072002),2002年,负责人

研究领域

电化学能量储存转化材料与化学电源(锂离子电池、超级电容器和锂硫电池) 气体敏感材料与气体传感器 功能纳米材料表面与界面电子结构 电极/电解液界面

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Liu CY, Xie GM, Xu ZQ, Liang C, Xu P*, Fang HT*. Improved zero-charge storage performance of LiCoO2/mesocarbon microbeads lithium-ion battery by Li5FeO4 cathode additive. ACS Appl Mater Interfaces, 2022, 14, 14: 16117–16124 https://doi.org/10.1021/acsami.1c21392 Yan TG, Li F, Xu CY, Fang HT*. Highly unform lithiated nafion thin coating on saparator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochimica Acta, 2022, 410: 140004 https://doi.org/10.1016/j.electacta.2022.140004 Xu CY, Li Q, Wang QZ, Kou XD, Fang HT*, Yang LJ*. Femtosecond laser drilled micro-hole arrays in thick and dense 2D nanomaterial electrodes toward high volumetric capacity and rate performance. J Power Sources, 2021, 492:229638 https://doi.org/10.1016/j.jpowsour.2021.229638 Li Q, Wang QZ, Li LL, Yang LJ*, Wang Y, Wang XH*, Fang HT*. Femtosecond Laser-Etched MXene Microsupercapacitors with Double-Side Configuration via Arbitrary On- and Through-Substrate Connections. Adv Energy Mater, 2020, 10:2000470 (cover picture paper) https://doi.org/10.1002/aenm.202000470 Li F, Xu ZQ, Sun Q, Hong D, Xu CY, Wang Y, Fang HT*. Electrophoretically-deposited p-Phenylene Diamine Reduced Graphene Oxide Ultrathin Film on LiNi0.5Mn1.5O4 Cathode to Improve the Cycle Performance. ACS Appl Mater Interfaces, 2019, 11(39):35667-35674 https://doi.org/10.1021/acsami.9b10024 Cao BK, Huang JT, Zhao FY, Mo Y, Chen Y*, Fang HT*. Surface chemistry of tube-in-tube nanostructured cuprous sulfide@void@carbon in catalytical polysulfide conversion. J Mater Chem A, 2019, 7:12815 https://doi.org/10.1039/C8TA12097H Cao BK, Huang JT, Mo Y, Xu CY, Chen Y*, Fang HT*. A collaboratively polar-conductive interface for accelerating polysulfides redox conversion. ACS Appl Mater Interfaces, 2019, 11(15):14035-14043 https://doi.org/10.1021/acsami.8b21447 Wang HX, Wu CH, Eren B, Hao YB, Feng BM, Fang HT*, Salmeron M*. Operando STM study of the interaction of imidazolium-based ionic liquid with graphite. Energy Storage Materials, 2019, 20:139-145 https://doi.org/10.1016/j.ensm.2018.11.026 Liu CY, Yang Y, Yao M, Fang HT*. Lithium difluoro(oxalate)borate improving the zero-volt storage performance of lithium-ion batteries by offering anode SEI film tolerance to high potentials. Energy Storage Materials, 2019, 18:148-154 https://doi.org/10.1016/j.ensm.2018.09.023 Wang HX, Wu CH, Weatherup RS, Feng BM, Ye YF, Liu YS, Glans PA, Guo JH, Fang HT*, Salmeron MB*. X-ray-Induced Fragmentation of Imidazolium-Based Ionic Liquids Studied by Soft X-ray Absorption Spectroscopy. J Phys Chem Lett, 2018, 9(4): 785~790 https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.8b00057 Wang HX, Feng BM, Ye YF, Guo JH, Fang HT*. Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation for high performance electrochemical energy storage devices. Electrochimica Acta, 2017, 240, 122-128 Feng BM, Wang HX, Zhang YQ, Shan XY, Liu M, Li F, Guo JH, Feng J, Fang HT*. Free-standing hybrid film of less-defective graphene coated with mesoporous TiO2 for flexible lithium ion batteries with fast discharging capabilities. 2D Materials, 2017, 4, 015011 Wang DN*, Wang HX, Yang JL, Zhou JG, Hu YF, Qiao QF, Fang HT*, Sham TK. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure. J Power Sources, 2016, 302, 223-232 Hong D, Guo YF, Wang HX, Zhou JG, Fang HT*. Mechanism for improving the cycle performance of LiNi0.5Mn1.5O4 by RuO2 surface modification and increasing discharge cut-off potentials. J Mater Chem A, 2015, 3, 15457-15465 Feng BM, Wang HX, Wang DN, Yu HL, Chu Y, Fang HT*. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process. Nanoscale, 2014, 6(23): 14371-14379 Zhou JG*, Hong D, Wang J, Hu YF, Xie XH, Fang HT*. Electronic structure variation of the surface and bulk of a LiNi0.5Mn1.5O4 cathode as a function of state of charge: X-ray absorption spectroscopic study. Phys. Chem. Chem. Phys., 2014, 16:13838-13842 Fang HT*, Liu M, Wang DW, Ren XH, Sun X. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading. Nano Energy, 2013, 2:1232-1241 Zhou JG, Fang HT, Maley JM, Murphy MW, Peter Ko JY, Cutler JN, Sammynaiken R, Sham TK, Liu M, Li F. Electronic structure of TiO2 nanotube arrays from X-ray absorption near adge structure studies. Journal of Materials Chemistry, 2009, 19:6804-6809. Fang HT*, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou JG, Sham TK, Cheng HM. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology, 2009, 20:225701. Zhou JG, Fang HT, Hu YF, Sham TK, Wu CX, Liu M, Li F. Immobilization of RuO2 on carbon nanotube: an X-ray absorption near-edge structure study. Journal of Physical Chemistry C, 2009, 113:10747-10750. Zhou JG, Fang HT, Maley JM, Peter Ko JY, Murphy M, Chu Y, Sammynaiken R, Sham TK. An X-ray absorption, photoemission, and raman study of the interaction between SnO2 nanoparticle and carbon nanotube. Journal of Physical Chemistry C, 2009, 113:6114-6117. Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Lu GQ, Cheng HM. Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage, Advanced Functional Materials, 2008, 18: 3787-3793. Fang HT, Sun X, Qiang LH, Wang DW, Li F, Chu Y, Wang FP, Cheng HM. Synthesis of Tin (Ⅱ or Ⅳ) Oxide Coated Multi-wall Carbon Nanotubes with Controlled Morphology. Journal of Physical Chemistry C, 2008, 112:5790-5794. Liu CG, Fang HT, Li F, Liu M, Cheng HM. Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors. Journal of Power Source, 2006, 160:785-761. Fang HT, Liu CG, Liu C, Li F, Liu M, Cheng HM. Purification of Single-wall Carbon Nanotubes by Electrochemical Oxidation. Chemistry of Materials. 2004, 16(26): 5744-5750. Fang Hai-Tao, Jeon Jae-Ho, Zhu Jing-Chuan, Yin Zhong-Da. Inhibition of liquid Si infiltration into carbon-carbon composites by the addition of Al to the Si slurry pre-coating: mechanism analysis. Carbon. 2002, 40: 2559-2565. Fang Hai-Tao, Yin Zhong-Da, Zhu Jing-Chuan, Jeon Jae-Ho and Hahn Yoo-Dong. Effect of Al additive in Si slurry coating on liquid Si infiltration into carbon-carbon composites. Carbon. 2001, 39 (13): 2035-2041. Hai-Tao Fang, Jing-Chuan Zhu, Zhong-Da Yin, Jae-Ho Jeon and Yoo-Dong Hahn. A Si-Mo fused slurry coating for oxidation protection of carbon-carbon composites. J. Mater. Sci. Lett. 2001,20(2):175-177.

推荐链接
down
wechat
bug