个人简介
招生专业
081002-信号与信息处理
085400-电子信息
招生方向
声频信号处理
招生要求
本实验室毕业生大多就业于华为、阿里、腾讯、百度、小米等知名企业且供不应求。
欢迎具备以下素养的学生来实验室读研:
(1)扎实的数学功底;
(2)坚实的声学或数字信号处理基础;
(3)较好的代码能力或丰富的硬件经验。
教育背景
2010-09--2013-07 中科院声学所 博士
2005-09--2008-03 东南大学 硕士
2001-09--2005-07 山东大学 学士
工作简历
2016-04~2017-04,德国波鸿鲁尔大学通信声学研究所, 访问学者
2013-07~现在, 中国科学院声学研究所, 研究员
2008-03~2010-07,富迪科技(南京)有限公司, 高级工程师
教授课程
通信声学前沿技术讲座
通信声学
奖励信息
(1) 中国科学院优秀博士论文奖, , 院级, 2016
(2) 中国科学院院长奖优秀奖, , 院级, 2013
(3) 中国科学院/北京市优秀毕业生, , 院级, 2013
专利成果
( 1 ) 一种基于时间反转的声反馈抑制方法, 发明, 2014, 第 1 作者, 专利号: 201110081446.8
( 2 ) 一种用于通信系统中的回声抵消方法, 发明, 2014, 第 1 作者, 专利号: 201110082201.7
( 3 ) 一种基于反馈信号频谱估计的啸叫抑制方法, 发明, 2014, 第 1 作者, 专利号: 201110082197.4
( 4 ) 基于回声频谱估计和语音存在概率的立体声回声抵消方法, 发明, 2013, 第 1 作者, 专利号: 201110081430.7
( 5 ) 一种立体声音效增强系统, 发明, 2017, 第 1 作者, 专利号: 201510645398.9
( 6 ) 一种基于卡尔曼滤波的去混响方法及系统, 发明, 2017, 第 2 作者, 专利号: 201711285885.4
( 7 ) 一种非平稳噪声环境下的麦克风阵列语音增强方法, 发明, 2015, 第 2 作者, 专利号: 201110427329.2
( 8 ) 一种复数窄带干扰信号的频率估计及抑制装置及其方法, 发明, 2015, 第 2 作者, 专利号: 201510587605.X
( 9 ) 一种无误差传声器的自适应主动降噪方法, 发明, 2018, 第 2 作者, 专利号: 201810214429.9
( 10 ) 一种低复杂度的频域盲分离方法及系统, 发明, 2019, 第 2 作者, 专利号: 201910207390.2
( 11 ) 一种用于调节扬声器音量的多通道扩声系统及方法, 发明, 2019, 第 2 作者, 专利号: 201911196868.2
科研项目
( 1 ) 变步长和变正则化因子的子带自适应滤波算法研究, 主持, 国家级, 2016-01--2018-12
( 2 ) 基于传声器阵列的室内拾音关键技术研究, 主持, 市地级, 2018-06--2020-12
( 3 ) 中罗例会交流项目“自适应滤波算法及其在系统辨识中的应用”, 主持, 国家级, 2018-06--2019-12
( 4 ) 基于嵌入式智能电视终端的海端音效处理技术, 参与, 部委级, 2013-01--2016-12
( 5 ) 基于F0型DSP平台的音效增强技术, 主持, 院级, 2014-01--2015-12
( 6 ) 扩声系统环境噪声检测自动增益项目, 主持, 院级, 2018-05--2019-12
( 7 ) 快速仿射投影算法的性能比较和理论分析, 主持, 市地级, 2014-01--2015-12
( 8 ) 远场语音拾取关键技术研究, 主持, 部委级, 2018-01--2021-12
( 9 ) 列车广播语音信号增强技术研究, 主持, 院级, 2019-12--2021-12
( 10 ) CPS融合的工控异常检测技术与系统, 参与, 部委级, 2019-05--2025-12
( 11 ) 室内声场自动均衡, 主持, 院级, 2020-10--2021-04
( 12 ) 回声抵消, 主持, 院级, 2021-01--2021-12
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] S. Liu, F. Yang, Y. Cao, and J. Yang, "Frequency-dependent auto-pooling function for weakly supervised sound event detection,” EURASIP Journal on Audio, Speech, and Music Processing, 2021.
[2] F. Yang, G. Enzner, and J. Yang, "New insights into convergence theory of constrained frequency-domain adaptive filters,” Circuits Syst. Signal Process., vol. 40, pp. 2076–2090, Apr. 2021.
[3] Z. Yan, F. Yang, and J. Yang, "Optimum step-size control for a variable step-size stereo acoustic echo canceller in the frequency domain," Speech Communication, vol. 124, pp. 21–27, Nov. 2020.
[4] F. Yang, J. Guo, and J. Yang, "Stochastic analysis of the filtered-x LMS algorithm for active noise control," IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 2252–2266, 2020.
[5] J. Guo, F. Yang, and J. Yang, "Mean-square performance of the modified FxAP algorithm for active noise control," Circuit Syst. Signal Process., vol. 39, no. 8, pp. 4243–4257, Aug. 2020.
[6] J. Guo, F. Yang, and J. Yang, "Convergence analysis of the conventional filtered-x affine projection algorithm for active noise control," Signal Process., vol. 170, May, 2020.
[7] C. Lu, F. Yang, and J. Yang, “An adaptive time-domain Kalman filtering approach to acoustic feedback cancellation for hearing aids,” Chinese Journal of Electronics, pp. 139–146, Jan. 2020.
[8] F. Kang, F. Yang, and J. Yang, “A low-complexity permutation alignment method for frequency-domain blind source separation,” Speech Communication, vol. 115, pp. 88–94, Dec. 2019.
[9] F. Yang and J. Yang, "Convergence analysis of deficient-length frequency-domain adaptive filters," IEEE Trans. Circuits Syst. I, vol. 66, no. 11, pp. 4242–4255, Nov. 2019.
[10] F. Yang and J. Yang, "Mean-square performance of the modified frequency-domain block LMS algorithm," Signal Process., vol. 163, pp 18–25, Oct. 2019.
[11] F. Yang, G. Enzner, and J. Yang, "A unified approach to the statistical convergence analysis of frequency-domain adaptive filters," IEEE Trans. Signal Process., vol. 67, pp. 1785–1796, Apr. 2019.
[12] Y. Qi, F. Yang, M, Wu, and J. Yang, “A broadband Kalman filtering approach to blind multichannel identification,” IEICE Trans. Fundamentals, vol. E102-A, pp.788–795, June 2019.
[13] F. Yang and J. Yang, “Optimal step-size control of the partitioned block frequency-domain adaptive filter,” IEEE Trans. Circuits Syst. II, vol. 65, no. 6, pp. 814–818, Jun. 2018.
[14] F. Yang, Y. Cao, M. Wu, F. Albu, and J. Yang, “Frequency-domain filtered-x LMS algorithms for active noise control: a review and new insights,” Applied Sciences, vol. 8, no. 11, 2018.
[15] F. Yang and J. Yang, “Multiband-structured Kalman filter,” IET Signal Process., vol. 12, no. 6, pp. 722–728, Aug. 2018.
[16] F. Yang and J. Yang, “A comparative survey of fast affine projection algorithms,” Digital Signal Process., vol. 83, pp. 297–322, Dec. 2018.
[17] Q. Feng, F. Yang, and J. Yang, “Time-domain sound field reproduction using the group Lasso,” J. Acoust. Soc. Amer., vol. 143. No. 2. pp. EL55–EL60, Feb. 2018.
[18] F. Yang, G. Enzner, and J. Yang, "Statistical convergence analysis for optimal control of DFT-domain adaptive echo canceler," IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 5, pp. 1095–1106, May 2017.
[19] F. Yang, G. Enzner, and J. Yang, "Frequency-domain adaptive Kalman filter with fast recovery of abrupt echo-path changes," IEEE Signal Process. Lett., vol. 24, no. 12, pp. 1778–1782, Dec. 2017.
[20] Z. Yan, F. Yang, and J. Yang, "Block sparse reweighted zero-attracting normalised least mean square algorithm for system identification," Electronics Letters, vol. 53, pp. 899–900, July 2017.
[21] Q. Feng, F. Yang, and J. Yang, “Interpolation of the early part of the acoustic transfer functions using block sparse models,” J. Acoust. Soc. Amer., vol. 142, no. 6, pp. EL532–EL536, Dec. 2017.
[22] R. Zhu, F. Yang, and J. Yang, "An RLS-based Lattice-form complex adaptive notch filter," IEEE Signal Process. Lett., vol. 23, no. 2, pp.217–221, Feb. 2016.
[23] R. Zhu, F. Yang, and J. Yang, "A gradient-adaptive lattice based complex adaptive notch filter," EURASIP Journal on Advances in Signal Process., 2016.
[24] F. Yang, M. Wu, P. Ji, and J. Yang, "Low-complexity implementation of the improved multiband-structured subband adaptive filter algorithm," IEEE Trans. Signal Process., pp. 5133–5148, Oct. 2015.
[25] F. Yang, M. Wu, P. Ji, Z. Kuang, and J. Yang, "Transient and steady-state analyses of the improved multiband-structured subband adaptive filter algorithm," IET Signal Process., pp. 596–604, Oct. 2015.
[26] F. Yang, M. Wu, J. Yang, and Z. Kuang, "A fast exact filtering approach to a family of affine projection-type algorithms," Signal Process., vol. 101, pp. 1–10, Aug. 2014.
[27] F. Yang, M. Wu, and J. Yang, "A computationally efficient delayless frequency-domain adaptive filter algorithm," IEEE Trans. Circuits Syst. II, vol. 60, no. 4, pp. 222–226, Apr. 2013.
[28] F. Yang, M. Wu, and J. Yang, "Stereophonic acoustic echo suppression based on Wiener filter in the short-time Fourier transform domain," IEEE Signal Process. Lett., pp. 227–230, Apr. 2012.
[29] F. Yang, M. Wu, P. Ji, and J. Yang, "An improved multiband-structured subband adaptive filter algorithm," IEEE Signal Process. Lett., vol. 19, no. 10, pp.647–650, Oct. 2012.