当前位置: X-MOL首页全球导师 国内导师 › 刘成

个人简介

招生专业 081201-计算机系统结构 招生方向 专用硬件加速,FPGA可重构计算,容错计算 教育背景 2009-09--2016-04 香港大学 博士 2007-09--2009-07 哈尔滨工业大学 硕士 2003-09--2007-07 哈尔滨工业大学 本科 工作简历 2018-06~现在, 中国科学院计算技术研究所, 副研 2016-12~2018-06,新加坡国立大学, Research Fellow 发表著作 (1) FPGA overlays. In FPGAs for Software Programmers, Springer, 2016-12, 第 2 作者 科研项目 ( 1 ) 基于FPGA的专用高能效图计算加速研究, 主持, 国家级, 2021-01--2022-12

研究领域

专用硬件加速,FPGA可重构计算,容错计算

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

(1) Reliability Evaluation and Analysis of FPGA-based Neural Network Acceleration System, IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 2021, 通讯作者 (2) GCiM: A Near-Data Processing Accelerator for Graph Construction, IEEE/ACM Proceedings of Design, Automation Conference (DAC), 2021, 第 2 作者 (3) PicoVO: A Lightweight RGB-D Visual Odometry Targeting Resource-Constrained IoT Devices, The 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, 通讯作者 (4) Accelerating Generative Neural Networks on Unmodified Deep Learning Processors-A Software Approach, IEEE Transactions on Computers, 2020, 第 2 作者 (5) EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks, IEEE Transactions on Computers, 2020, 第 3 作者 (6) A Hybrid Computing Architecture for Fault-tolerant Deep Learning Accelerators, The 38th IEEE International Conference on Computer Design (ICCD), 2020, 通讯作者 (7) DeepBurning-GL: an Automated Framework for Generating Graph Neural Network Accelerators, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2020, 第 2 作者 (8) Persistent Fault Analysis of Neural Networks on FPGA-based Acceleration System, The 31th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2020, 通讯作者 (9) CNT-Cache: an Energy-Efficient Carbon Nanotube Cache with Adaptive Encoding, IEEE/ACM Proceedings of Design, Automation and Test in Europe conference (DATE), 2020, 通讯作者 (10) BitPruner: Network Pruning for Bit-Serial Accelerators, IEEE/ACM Proceedings of Design, Automation Conference (DAC), 2019, 第 3 作者 (11) OBFS: OpenCL Based BFS Optimization on Software Programmable FPGAs, In 2019 International Conference on Field Programmable Technology (FPT), 2019, 第 1 作者 (12) InS-DLA: An In-SSD Deep Learning Accelerator for Near-Data Processing, The International Conference on Field-Programmable Logic and Applications (FPL), 2019, 第 3 作者 (13) Resilient Neural Network Training for Accelerators with Computing Errors, The 30th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2019, 通讯作者 (14) QuickDough: a rapid FPGA loop accelerator design framework using soft CGRA overlay, 2015 International Conference on Field Programmable Technology (FPT), 2015, 第 1 作者

推荐链接
down
wechat
bug