个人简介
1996.09-2000.07,湖北师范大学,物理学本科
2000.09-2003.07,湖北大学,应用数学硕士
2003.09-2006.07,中科院固体物理研究所,凝聚态物理博士
2006.07-2008.07,中科院固体物理研究所,助理研究员
2007.05-2007.08,德国卡尔斯鲁厄大学物理系,访问学者
2008.07-2009.09,日本国立材料研究所,博士后
2009.10-2011.10,日本国立材料研究所,日本学术振兴会(JSPS)研究员
2011.10-2012.12,南京航空航天大学高新技术研究院,三级教授,博士生导师
2013.01-至 今,南京理工大学材料学院,教授,纳米光电材料研究所创始人及所长
2016.09-至 今,新型显示材料与器件工信部重点实验室,创始人及主任
2016.10.19-10.27,国家行政学院,中组部第5期青年拔尖人才研修班学习
2017.04-2019.12,南京理工大学材料科学与工程学院,副院长
2017.05.04-05.09,延安泽东干部学院,教育部“长江学者奖励计划”入选者研修班学习
2017.10.09-11.09,江苏省省委党校,江苏省第19期高校党政干部进修班学习
2019.12-至 今,南京理工大学材料科学与工程,院长
2021.08-至 今,高性能纳米材料江苏省国际合作联合实验室,创始人及主任
研究领域
低维半导体光电材料与器件
包括:
半导体量子点发光材料
LED及TFT显示技术
吸波材料与隐身技术
能量转换微观机理谱学
半导体及器件理论设计
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites, Nature Photonics 2021, 15, 238-244.
Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for highperformance nuclear battery, Nature Communications 2021, 12, 3879-3887.
A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes, Nature Communications 2020, 11, 3902-3913.
Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring, Nature Communications 2020, 11, 3395-3404.
50-fold EQE Improvement up to 6.27% of Solution-processed All-inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Advanced Materials 2017, 29, 1603885-1603893.
CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminesence Superiorities, Underlying Origins and White Light-Emitting Diodes, Advanced Functional Materials 2016, 26, 2435-2445.
All-Inorganic Colloidal Pervoskite Quntum Dots: A New Class of Lasing Materials with Favorable Characteristics, Advanced Materials 2015, 27, 7101-7108.
Quantum Dot Light-emitting Diodes based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Advanced Materials 2015, 27, 7162-7167.
Engineering surface states of carbon dots to achieve controllable luminescencde for solid-luminescent composites and sensitive Be2+ detection, Scientific Reports 2014, 4, 4976-4983.
Blue luminescence of ZnO Nanoparticles Based on Nonequilibrium Process: Defect Origins and Emission Controls, Advanced Functional Materials, 2010, 20, 561-572.
Pressurized Alloying Assisted Synthesis of High Quality Antimonene for Capacitive Deionization, Advanced Functional Materials, 2021, 32, 2102766-2102776.
Black Phosphorene as A Hole Extraction Layer Boosting Solar Water Splitting of Oxygen Evolution Catalysts, Nature Communications 2019, 10, 2001-2010.
Modulating Epitaxial Atomic Structure of Antimonene through Interface Design, Advanced Materials 2019, 31, 1902606-1902613.
Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation, Nano letters 2019, 19, 1118-1123.
Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries, ACS Nano 2018, 12, 1887-1893.
Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductors and Novel Topological Insulator, Nano Letters 2017, 17, 3434−3440.
Two-dimensional antimonene single crystals grown by van der Waals epitaxy,Nature Communications 2016, 7, 13352-13360.
Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. In. Ed. 2016, 55, 1666-1669.
Atomically Thin Arsenene and Antimonene: Semimetal-semiconductor and Indirect-direct Band Gap Transitions, Angew. Chem. In. Ed. 2015, 54, 3112-3115.
White graphene: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Letters, 2010, 10, 5049-5055.