当前位置: X-MOL首页全球导师 国内导师 › 梁友才

个人简介

工作经历 2016年-2019年 格拉斯哥大学从事博士后工作 2020年至今 华南理工大学电力学院 教育经历 2004年9月-2008年7月:本科,车辆工程,昆明理工大学 2008年9月-2011年7月:硕士,动力机械及工程,昆明理工大学 2011年9月-2014年12月:博士,动力机械及工程,天津大学 获奖、荣誉称号 2008年6月,获“云南省优秀毕业生”。 2011年5月,获“云南省三好学生”。 2013年12月,获2013年博士研究生国家奖学金。 科研项目 1、广东省基础与应用基础研究基金区域联合基金项目(青年基金项目2020A1515110297),基于CO2非共沸混合工质两级喷射式双温制冷系统的协同调控机制,2020.10-2023.09,主持 2、中央高校科研基本业务费项目SCUT (2020ZYGXZR027),CO2非共沸混合工质两级喷射式双温制冷系统热力过程研究,2020.1-2021.12,主持 3、传热强化与过程节能教育部重点实验室开放课题,CO2正逆耦合循环多能流优化配置的协同控制研究,2021.1-2021.12,主持 4、EPSRC (Ref: EP/N020472/1),“Thermally Driven Heat Pump Based on an Integrated Thermodynamic Cycle for Low Carbon Domestic Heating (Therma-Pump)”, 2016.10–2019.12, 第一参与人 5、EPSRC (Ref: EP/P028829/1),“Geothermally sourced combined power and freshwater generation for eastern Africa (Combi-Gen)”,2017.5 –2020.4,参与 6、天津大学战略布局-产学研培育自主基金,大型船舶柴油机高效冷热电联供系统的研究,2016.1-2016.12,主持 7、国家重点基础研究发展计划(973项目)(NO.2011CB707201),“高效、节能、低碳内燃机余热能梯级利用基础研究”,2010年11月-2015年11月,参与 8、国家自然科学基金(NO.51206117),“多品位大温差余热低㶲损梯级转化联合循环的耦合及协同优化研究”,2011.1-2015.12,参与 9、天津市自然科学基金(NO. 12JCQNJC04400),“内燃机大温差废热梯级转化的联合循环效率协同优化研究”,2012.4-2015.4,,参与 研创新 [1]宁静红,梁友才,毛力,朱宗升。柔性转子接触密封的螺杆制冷压缩机,中国CN106351831A,公开日2018-05-11,排名2/4(发明专利) [2]宁静红,梁友才,毛力,朱宗升。带轴向柔动十字联接环的涡旋式压缩机,中国CN1064019544A,公开日2017-02-15,排名2/4(发明专利) [3]李晓宁,舒歌群,李团兵,梁友才,王轩。内燃机蒸汽增压余热回收系统。授权公布号:CN103742293B,授权公布日:2015-05-13, 排名4/5(发明专利) [4]田华,梁友才,舒歌群等.发明专利,船用发动机的冷电双效余热回收系统。公开:CN103245126A,公告日2013-08-14 [5]舒歌群,梁友才,卫海桥等.发明专利,朗肯循环海水淡化双效余热回收系统。公开号:CN103216283A,公告日2013-07-24 [6]舒歌群,刘丽娜,梁友才,赵建,田华,于国鹏。两级朗肯循环的柴油机排气余热回收系统,公开号:CN102777240A,公开日:2012-11-14 指导学生情况 指导博士1名,研究生3名 我的团队 能源清洁转化与系统优化团队

研究领域

余热回收,热力循环设计及优化

主要从事热力循环设计及优化相关研究。研究内容主要包括动力循环,热泵系统以及制冷循环的设计,循环优化,联合系统的热经济性评价,联产系统的能量输出管理等。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Shu G, Liang Y, Wei H*, et al. A review of waste heat recovery on two-stroke IC engine aboard ships [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 385-401. [2]Liang Y, Shu G, Wei H, et al. Effect of oxygen enriched combustion and water–diesel emulsion on the performance and emissions of turbocharged diesel engine [J]. Energy Conversion and Management, 2013, 73: 69-77. [3]Sun Z, Liang Y*, Liu S, et al. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A [J]. Applied Energy, 2016, 184: 19-25. [4]Liang Y, Shu G, Tian H, et al. Theoretical analysis of a novel electricity–cooling cogeneration system (ECCS) based on cascade use of waste heat of marine engine [J]. Energy Conversion and Management, 2014, 85: 888-894. [5]Liang Y, Shu G, Tian H, et al. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship [J]. Energy Conversion and Management, 2013, 76: 1053-1060. [6]Liang Y, Shu G*, Tian H, Sun Z. Investigation of a cascade waste heat recovery system based on coupling of steam Rankine cycle and NH3-H2O absorption refrigeration cycle [J]. Energy conversion and management, 2018 166: 607-703 [7]Liang Y, Al-Tameemi M, Yu Z*. Investigation of a gas-fuelled water heater based on combined power and heat pump cycles [J]. Applied Energy, 2018, 212: 1476-1488 [8]Liang Y, Bian X, Qian W, Pan M*, Ban Z, Yu Z. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine. Energy Conversion and Management. 2019 Oct 1;197:111845. [9]Liang Y, Yu Z*, Li W. A waste heat driven cooling system based on combined organic Rankine and vapour compression refrigeration cycles. Applied Sciences. 2019 Jan;9(20):4242. [10]Sun Z*, Wang C, Liang Y*, Sun H, Liu S, Dai B. Theoretical study on a novel CO2 two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system. Energy conversion and management 2019 Nov 22:112278 [11]Sun Z*, Wang Q, Liang Y*, Su D, Sun H, Liu S, Zhao S. Experimental study on improving the performance of dry evaporator with rectifying nozzle type critical distributor. International Journal of Refrigeration, 2020, 111: 39-52. [12]Sun Z*, Li J, Liang Y*, Sun H, Liu S, Yang L, Wang C, Dai B. Performance Assessment of CO2 supermarket refrigeration system in different climate zones of China. Energy conversion and management, 2020, 208: 112572. [13]Liang Y, Sun Z, Dong M, Lu J, Yu Z*. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine[J]. International Journal of Refrigeration, 2020, 118:470-482. [14]Pan M, Zhu Y, Bian X, Liang Y*, Lu F, Ban Z. Theoretical analysis and comparison on supercritical CO2 based combined cycles for waste heat recovery of engine[J]. Energy Conversion and Management, 2020, 219: 113049. [15]Pan M, Zhao H, Liang D, Zhu Yan, Liang Y*, Bao G. A Review of the Cascade Refrigeration System. Energies 2020, 13, 2254. [16]Pan M, Huang Y, Zhu Yan, Liang Y*,Yu G*. Co- and Tri- Generation System Based on Absorption Refrigeration Cycle: A Review. International Journal of Green energy,2020: 1-25. [17]Pan M, Bian X, Zhu Y, Liang Y*,Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery jector refrigeration. Energy Conversion and Management,2020, 224: 113373. [18]Liang Y*, Yu Z. Experimental investigation of an Organic Rankine cycle system using an oil-free scroll expander for low grade heat recovery International Journal of Green energy,2021: 1-10. [19] Liang Y, Mckeown A, Yu Z*, et al. Experimental study on a heat driven refrigeration system based on combined organic Rankine and vapour compression cycles[J]. Energy Conversion and Management, 2021, 234: 113953. [20]Liang Y, Shu G*, Tian H, et al. Thermodynamic Analysis of an Electricity-Cooling WHR Cogeneration System Aboard Ships using Siloxanes as Working Fluids [R]. SAE Technical Paper, 2014. Detroit, USA [21]Liang Y. Theoretical Analysis of a Novel Electricity-Cooling Cogeneration System Based on Waste Heat Recovery of Marine Engine [R]. SAE Technical Paper, 2016. Detroit, USA [22]Liang Y, Yu Z.*. Working fluid selection for a combined system based on coupling of organic Rankine cycle and air source heat pump cycle. Energy Procedia. 2019 Feb 1;158:1485-90. Hongkong, China. [23]Liang Y, Mckeown A., Yu G., Yu Z.*, Experimental research on a small air-source heat pump with an oil-free scroll compressor. The 5th Sustainable Thermal Energy Management International Conference 2019. Hangzhou, China. [24]Liang Y, Yu Z.*, Mckeown A., Theoretical analysis of an ORC-VCR based air conditioning system by heat recovery of jacket coolant. ORC2019, Athens, Greece. [25]Liang Y, Shu G. *, Wei H., Liang X., Tian H. Theoretical analysis of a novel electricity-cool cogeneration system driven by a ship diesel engine waste heat based on Rankine-absorption combined cycle, 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013; Guilin; China.

推荐链接
down
wechat
bug