个人简介
工作及研究经历:
2009.9-2011.9 清华大学,助理研究员
2011.4-5 香港中文大学,访问学者
2011.9-至今 华南理工大学,讲师、副教授(期间 意大利Università degli Studi dell'Insubria博士后)
专著:
沈尧天,王友军,李周欣,《拟线性椭圆型方程的现代变分方法》,高等教育出版社,2017年 (国家科学技术学术著作出版基金资助项目)
主持参与科研情况:
1.数学物理中一类拟线性Schrodinger方程的研究,中国博士后科学基金,2009.10-2011.10,(主持,完成)
2.非线性分析及其应用中的前沿问题,中央高校基本科研业务费(面上项目),2012.1-2013.12, (主持,完成)
3.含参数的拟线性Schrodinger方程驻波解及其性态的研究,中央高校基本科研业务费(重点项目)2014.1--2015.12,(主持,完成)
4.非线性椭圆型方程解及其性态的研究,国家自然科学青年基金,2013.1-2015.12, (主持,完成)
5.耦合非线性Schrodinger方程尖峰解,教育部博士点基金,2013.1-2015.12, (主持,完成)
6.非正规不可微泛函临界点和拟线性Schrodinger方程的研究,国家自然科学基金(面上项目), 2014.1-2017.12 (主要参与者)
7.拟线性Schrodinger方程中若干问题,中央高校基本科研业务费(面上项目), 2018-2020 主持、在研)
8.光滑泛函在退化椭圆型偏微分方程中的应用,广东省自然科学基金,2018-2021,(主持、在研)
担任《Mathematical Reviews》评论员
主讲课程:
本科生:《数学分析习题课》、《数学物理方程》、《线性代数与解析几何》、《工科数学分析》、《积分变换》
研究生:《二阶椭圆型偏微分方程》
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
36.Daniele Cassani, Luca Vilasi, Youjun Wang, Local versus nonlocal elliptic equations: short-long range eld interactions, Adv. Nonlinear Anal. 2021; 10: 895–921
35. Cassani, D, Wang YJ, Zhang JJ,A Unified Approach to Singularly Perturbed Quasilinear Schrodinger Equations, MILAN JOURNAL OF MATHEMATICS, 88(2) (2020) 507-534
34.Wang YJ, Zhang YM, Positive solutions for a relativistic nonlinear Schrodinger equation with square-root nonlinearity, JOURNAL OF MATHEMATICAL PHYSICS 61(11) (2020) 111509
33.Y.Shen, Y. Wang, Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in R^N, CPAA, (2020)
32. Y. Wang, Y. Mei, Existence of solutions for a class of generalized quasilinear Schrödinger equations, AMC, 102, (2020)
31.Y. Shen, Y. Wang, A class of quasilinear Schrödinger equations with improved (AR) condition, Acta Appl Math (2019).
30 Zhouxin Li, Youjun Wang, Solutions to singular quasilinear elliptic equations on bounded domains, 2018(11) (2018) 1–12.
29. Youjun Wang, Multiplicity of solutions for singular quasilinear Schrodinger equations with critical exponents, J. Math. Anal. Appl. 458(2) (2018) 1027-1043
28. Youjun Wang, Yaotian Shen,Existence and asymptotic behavior of a class of quasilinear Schrodinger equations,Advanced Nonlinear Studies, 2018
27. Youjun Wang, Zhouxin Li, Existence of solutions to quasilinear Schrodinger equations involving critical Sobolev exponent, Taiwanese Journal of Mathematics, 2018
26. Youjun Wang, Qing Li, Existence and asymptotic profiles of positive solutions of quasilinear Schrodinger equations in R^3, J. Math. Phys., 58(2017)111502
25. Youjun Wang*, Zhouxin Li, A. A. Abdelgadir, On singular quasilinear Schrodinger equations with critical exponents, Math. Meth. Appl. Sci., (2017) DOI: 10.1002/mma.4373
24. Youjun Wang*, Solitary solutions for a class of Schrodinger equations in R^3,, Z. Angew. Math. Phys.,(2016) 67-88
23. Yaotian Shen,Youjun Wang*, A class of generalized quasilinear Schrodinger equations, Comm. Pure. Appl. Anal.,15(3) (2016) 853-870
22. Yaotian Shen,Youjun Wang*, Standing waves for a class of quasilinear Schrodinger equations, Complex Variables and Elliptic Equations.,61(6) (2016) 817-842
21. Yaotian Shen, Youjun Wang*, Standing waves for a relativistic quasilinear asymtoically Schrodinger equations, Applicable Analysis, 2015
20. Youjun Wang*, A class of quasilinear Schrodinger equations with critical or supercitical exponents, Comput. Math. Appl., 70(4) (2015) 562-572
19. Yaotian Shen, Youjun Wang, Two types of quasilinear elliptic equations with degenerate coerciveness and slightly superlinear growth, Applied. Math. Lett. 47 (2015) 21-25
18.C.O.Alves, Youjun Wang, Yaotian Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259(1) (2015) 318-343
17.Yaotian Shen, Zhouxin Li, Youjun Wang, Sign-changing critical points for noncoercive functionals, Topol. Method. Nonl. Anal., 43 (2) (2014) 273
16.Ahamed Adam Abdelgadir, Yongsheng Li, Youjun Wang, The nonlinear biharmonic problem with critical potential and weight, Math. Appl., 26 (2) (2013) 431—43
15.Youjun Wang*, Yangxin Yao, Standing waves for quasilinear Schrodinger equations, J. Math. Anal. Appl., 400(2), 2013,305-310.
14. Yaotian Shen, Youjun Wang*, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal TMA. 80 (2013) 194-201.
13.Jun Yang, Youjun Wang*, Ahamed Adam Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys. 54, 071502 (2013); doi: 10.1063/1.4811394.
12.Youjun Wang, Wenming Zou, On a class of schrodinger systems with critical exponents, Proc. Roy. Soc. Edinburgh Sect.A., 142 (2012) 199-213
11.Youjun Wang, Wenming Zou, Bound states to critical quasilinear schrodinger equations, Non. Diff. Equa. Appl., 2011,19 (2012) 19-47.
10. Youjun Wang, Yaotian Shen, Multiplicity of solutions for nonlinear biharmonic equation involving critical parameter and critical exponent, Chin. Quart. J. of Math.,26(3) (2011) 317-324
9.Yimin Zhang, Youjun Wang, Yaotian Shen, Solutions for quasilinear schrodinger equations with critical Sobolev-Hardy exponents, Comm. Pure. Appl. Anal., 10 (2) (2011) 1037-1054
8.Youjun Wang, Multiple solutions for quasilinear elliptic equations with critical growth,J. Korean. Math. Soc., 48(6) (2011) 1269-1283
7.Youjun Wang, Yimin Zhang, Yaotian Shen, Multiple solutions for quasilinear schrödinger equations involving critical exponent, Appl. Math. Comp, 216(3) (2010) 849-856.
6.Youjun Wang, Yaotian Shen, Existence of sign-changing solutions for the p-Laplacian equation from linking type theorem, Acta Mathematica Sinica, 26 (2010) 1355-1368.
5.Youjun Wang, Yaotian Shen, Multiple and sign-changing solutions for nonlinear elliptic equationwith critical potential and critical parameter, Acta Mathematica Scientia, 30(1) (2010)113-124
4.Youjun Wang, Yaotian Shen, Multiple and sign changing solutions for a class of semlinear biharmonic equations, J.Differential Equations, 246 (8) (2009) 3109-3125.
3.Youjun Wang, Jun Yang, Yimin Zhang, Quasilinear elliptic equations involving the N Laplacian with critical exponential growth in R^N , Nonlinear Analysis TMA.,21 (2009) 6157-6169.
2.Youjun Wang,Yaotian Shen, Nonlinear biharmonic equations with Hardy potential and critical parameter, J. Math. Anal. Appl.,355 (2009) 649-660.
1.Youjun Wang, Yaotian Shen, Infinitely many sign changing solutions for a class of biharmonic equation without symmetry, Nonlinear Analysis TMA, 71(2009) 967-977.