近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
2017年(3篇)
1.杨启贵*,白美丽,A new 5D hyperchaotic system based on modified generalized Lorenz system,Nonlinear Dynamics,
2.尹宗斌,杨启贵*,Distributionally n-Scrambled Set for Weighted Shift Operators,Journal Of Dynamical and Control Systems
3.杨启贵*,朱平,Stepanov-like doubly weighted pseudo almostautomorphic processes and its application to Sobolev-type stochastic differentialequations driven by G-Brownian motion,Mathematical Methods in the Applied Sciences
2016年(3篇)
1.曾才斌,杨启贵*,陈阳泉,Bifurcation Dynamics of The Tempered Fractional Langevin Equation,Chaos
2.尹宗斌,杨启贵*,Generic Distributional Chaos and Principal Measure in Linear Dynamics,Annales Polonici Mathematici
3.泽山,袁利国,杨启贵*,Chaos And Combination Synchronization Of A New Fractional-Order System With Two Stable Node-Foci,Ieee/Caa Journal of Automatica Sinica
2015年(5篇)
1.曾才斌,杨启贵*,Dynamics of the stochastic Lorenz chaotic system with long memory effects,Chaos
2.尹宗斌,杨启贵*,Distributionally scrambled set for an annihilation operator,International Journal of Bifurcation and Chaos
2014年(5篇)
1.Q. Yang,Y. Chen, Complex dynamics of unified Lorenz-type systems, Inter. J. Bifur. Chaos 2014, 24(4): 24: 4(2014),1450055 (30 pages)
2.Y. Chen, Q. Yang*. Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn 77: 3(2014), 569-581. (通讯作者)
3.Jianghong Bao,Qigui Yang,Darboux integrability ofthe stretch-twist-fold flow, Apll. Math. Comput 229(2014), 16-26.
4.Jianghong Bao,Qigui Yang,Darboux integrability of the stretch-twist-fold flow, Nonlinear Dyn, 76: 1(2014), 797-807.
5.Caibin Zeng, Qigui Yang, and Junfei Cao. Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian The Scientific World Journal. 2014, Article ID 601327, 7 pages http://dx.doi.org/10.1155/2014/601327
2013年(5篇)
1.Q. Yang, C. Zeng, C. Wang, Fractional noise destroys or induces a stochastic bifurcation, Chaos. 23(2013):043120 (5 pages).
2.Q. Yang,. Chen, A 5D hyperchaotic system with three positive Lyapunov exponents coined, Inter. J. Bifur. Chaos 2013, 23( 6): 1350109 (24 pages).
3.C. Zeng, Y. Chen, Q. Yang, Almost sure and moment stability properties of fractional order Black-Scholes model, Fra. Calc. Appl. Anal. 2013, 16(2): 317-331
4.Yuming Chen, Qigui Yang*, The nonequivalence and dimension formula for attractors of Lorenz-type systems, Inter. J. Bifur. Chaos, 23:12(2013): 1350200 (12pages) (通讯作者)
5.LiguoYuan, Qigui Yang, Caibin Zeng. Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn 73(2013):439–448
2012年(9篇)
1.Li-Guo Yuan, Qi-Gui Yang*, Parameter identification and synchronization of fractional-order chaotic systems, Commun Nonlinear Sci Numer Simulat 17 (2012) 305–316 (通讯作者)
2.Junfei Cao, Qigui Yang*, Zaitang Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations, Commun Nonlinear Sci Numer Simulat 17 (2012) 277–283 (通讯作者)
3.Junfei Cao, Qigui Yang*, Zaitang Huang, On almost periodic mild solutions for stochastic functional differential equations, Nonlinear Analysis Series B: Real World Applications, 13 (2012) 275–286 (通讯作者)
4.Zeng, CB; Yang, Qigui; Chen, YQ. Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach, Nonlinear Dynamics, 64:4(2012), 2719-2726.
5.Guirong Jiang, Qigui Yang*, Complex dynamics of a linear Hamiltonian system under impulsive control, Int J Bifur Chaos,22: 3(2012), 1250076 (16pages)(通讯作者)
6.Wei Zhouchao; Yang Qigui. Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dynamics, 68: 4(2012), 543-554.
7.Zeng Caibin; Chen YangQuan; Yang Qigui. The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 15: 3(2012), 479-492.
8.Bao Jianghong; Yang Qigui. Period of the discrete Arnold cat map and general cat map,Nonlinear Dynamics, 70:2(2012), 1365-1375.
9.Qigui Yang, Guirong Jiang, Tianshou Zhou. Chaotification of linear implusive differential systems with applications. Int J Bifur Chaos, 22 :12(2012), 1250297 (12 pages).
2011年(11篇)
1.Junfei Cao, Qigui Yang*, Zai-Tang Huang. Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations, Nonlinear Analysis: Theory, Method and Applications, 74 : 1(2011), 224-234 (SCI) (通讯作者)
2.Zhouchao Wei, Qigui Yang, Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria, Nonlinear Analysis: Real World Applications, 12: 1(2011), 106-118 (SCI)
3.Zai-Tang Huang, Qigui Yang*, A stochastic model for interactions of hot gases with cloud droplets and raindrops, Nonlinear Analysis: Real World Applications, 12: 1(2011), 203-214 (通讯作者)
4.Jianghong Bao, Qigui Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217(2011), 6526-6540.
5.Zai-Tang Huang, Qigui Yang*, Cao Junfei. Stochastic stability and bifurcation analysis on Hopfield neural networks with noise, Expert Systems With Applications, 38 (2011) 10437–10445. (通讯作者)
6.Junfei Cao, Qigui Yang*, Zaitang Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stochastics, 83(2011), 259-275. (通讯作者)
7.Zaitang Huang, Qigui Yang*, Junfei Cao, Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise, Appl. Math. Modell. 35 (2011) 5842–5855.(通讯作者)
8.Zeng, C,. Yang, Q.,J. Wang, Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci, Nonlinear Dynamics, 65: 4 (2011), 457-466.
9.Junfei Cao, Qigui Yang*, Zaitang Huang, Qing Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput. 218 (2011) 1499– 1511.(通讯作者)
10.Zaitang Huang, Qigui Yang, Junfei Cao, The stochastic stability and bifurcation behavior of Internet congestion control model, Mathematical and Computer Modelling, 54: 9-10(2011), 1954-1965.
11.Yongjian Liu, Qigui Yang, Dynamics of the Lu system on the invariant algebraic surface and at infinity, Int J Bifur Chaos, 21:9(2011), 2559-2582
2010年(9篇)
1.Qigui Yang, Zhouchao Wei, Chen Guanrong, An unusual 3D autonomous quadratic chaotic sysytem with two stable node-foci, Int J Bifur Chaos, 20: 4(2010), 1061–1083.
2.Zai-Tang Huang, Qigui Yang, Exponential stability of impulsive high-order cellular neural networks with time-varying delays, Nonlinear Analysis: Real World Applications, 11(2010), 592-600
3.Yongjian Liu, Qigui Yang*, Dynamics of a new Lorenz-like chaotic system, Nonlinear Analysis: Real World Applications, 11 (2010) 2563–2572. (SCI) (通讯作者)
4.Liu Yongjian, Qigui Yang, Guoping Peng, A hyperchaotic system from the Rabinovich s ystem, Journal of Computational and Applied Mathematics 234 (2010) 101–113.
5.Yang, Q., Zeng, C., Chaos in fractional conjugate Lorenz system and its scaling attractors, Communications in Nonlinear Science and Numerical Simulation 15 (2010) 4041–4051.
6.Zeng, C,. Yang, Q., A fractional order HIV internal viral dynamics model, Computer Modeling in Engineering & Sciences, 59: 1(2010), 65-78.
7.Zhouchao Wei, Qigui Yang*, Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci, Appl Math Comput., 217 (2010) 422–429. (通讯作者)
8.Jianghong Bao, Qigui Yang, Complex dynamics in the stretch-twist-fold flow, Nonlinear Dynamics, 61(2010), 773—781.
9.Z hang Kangming, Qigui Yang*, Hopf bifurcation analysis in a 4D-hyperchaotic system, J. System Sci. and Complexity, 23: 4(2010), 748-758.