当前位置: X-MOL首页全球导师 国内导师 › 王晓天

个人简介

王晓天,1961年4月出生,复旦大学博士毕业,曾在武汉大学数学学院、天津大学管理学院做博士后。主要从事数理金融、行为金融的教学与科研工作。近年来,在国际核心期刊上公开发表论文26篇,全被SCI检索,并多次被国内外同行引用,其中10篇被SSCI检索。主持并完成了一项国家自然科学基金、目前正主持国家自然科学基金一项,参与过国家自然科学基金研究六项。在金融领域,从有限理性的视角提出了广义Delta规避策略,并给出了欧式期权定价公式的解析,该公式可以解释隐含波动率的偏斜现象;从行为金融的观点研究了股票收益具有长期记忆性时欧式期权的定价问题,发现投资者的锚定调整行为是股票收益长期记忆的原因之一;证明了欧式期权定价中的French经验公式;提出了分数矩CAPM及具有损失规避的分数矩CAPM。曾两次获得博士后科学基金的资助(二等、一等)。 在科研方面,目前主持的国家自然基金项目::分形金融市场中的若干问题研究,该项目批准号为:11271140, 曾于2007年主持国家自然科学基金(项目编号10771075,标题:分形几何在金融中的应用——非无套利假设下的期权定价与分形股票价格模型的构建)。此外,还参与过六项国家自然科学基金项目的研究;两次获得博士后科学基金的资助(武汉大学,二等;天津大学,一等)。

研究领域

数理金融、行为金融

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Wang,XT; Zhao,ZF; Fang,XF, Option pricing and portfolio hedging under the mixed hedging strategy,Physica A, 424,194-206, 2015.01.21(SSCI,SCI). [2]Wang,XT; Liang,XQ;Zhou,ZM, Option pricing under residual risk and imperfect hedging,J.Math.Anal.Appl,,415,269-293,2014.01.06(SSCI,SCI). [3] XTWang, M.Wu, MZZhou,SWJin, Pricing European option with transaction costs under the fractional long memory stochastic volatility model.PhysicaA,391,1469-1480,2012.02(SSCI,SCI) [4] Xiao-Tian Wang, Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs, Physica A 390 (2011) 1623–1634(SSCI,SCI). [5]Scaling and long rang dependence in option pricing I: Pricing European options with transaction costs under the fractional Black Scholes model. Physica A 389(2010) 438-444. (SSCI,SCI 第一作者) [6]Scaling and long rang dependence in option pricing II: Pricing European options with transaction costs under the mixed Brownian-fractional Brownian model. Physica A 389(2010) 445-451(SSCI,SCI 第一作者). [7]Scaling and long rang dependence in option pricing III:A fractional version of the Merton model with transaction costs. Physica A 389(2010) 452-458 SSCI, (SCI 第一作者). [8]Scaling and long rang dependence in option pricing IV: Pricing European options with transaction costs under the multifractional Black-Scholes model. Physica A 389(2010). 789-796 (SSCI,SCI 第一作者). [9] Whitening filter and innovational representation of fractional Brownian motion. Chaos, Solitons & Fractals,39(2009),2392-2398 (SCI,第一作者) . [10] Fractional-moment CAPM with loss aversion. Chaos, Solitons & Fractals 42(2009),1406-1414 (SSCI SCI, 通讯作者) [11] Fraction-moment Capital Asset Pricing model. Chaos, Solitons & Fractals 42(2009),412-421(SSCI SCI,通讯作者). [12] Nonhomogenesus fractional Poisson processes. Chaos, Solitons & Fractals.31 (2007) 236-241 (SCI, 第一作者) [13] On some generalization of fractional Brownian motions. Chaos, Solitons & Fractals.28(2006) 949-957(SCI,第一作者) [14] Fractional Poisson process(II). Chaos, Solitons & Fractals.28(2006) 143-147 (SCI, 第一作者) [15]Poisson fractional processes. Chaos, Solitons&Fractals.18.169-177(2003)(SCI, 第一作者) [16]Precise Coefficient Estimates for Close-to-Convex Harmonic Univalent Mappings. 2001,Journalof Mathematical Analysis and Applications 263,501-509(SCI收录 第一作者). [17]Option Pricing of fractional version of the Black-Scholes model with Hurst exponent H being .2001,Chaos ,Solitons and Fractals ,12,599-608(SCI收录 第一作者). [18]Determination of diffusion kernel on fractalsWang .2001. J.Phys.A:Math.Gen.34,9815-9825(SCI收录 第二作者). [19]A proof for French’s empirical formula on option pricing .2001,Chaos, Solitons and Fractals12,2441-2453 (SCI收录 第二作者). [20]Whitening filter and innovations representation of self-similar process. 2002, Chaos, Solitons and Fractals 14, 1047-1057 (SCI收录 第一作者). [21]On harmonic typically real mappings.2003, Journal of Mathematical Analysis and Applications 277, 533-554 (SCI收录 第一作者). [22]A fractional version of the Merton model. 2003, Chaos, Solitons and Fractals 15, 455-463 (SCI收录 第一作者). [23]Integral and derivatives on net fractals. 2003, Chaos, Solitons and Fractals 16, 107-117 (SCI收录 第三作者). [24]Determination of memory function and flux on fractals .2001,Physics Letters A 288,79-87 (SCI收录 第四作者). [25]On three open questions proposed by Falconer.1999,Progress in Nature Science,Vol,9NO.3 (第二作者). [26]The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media.1999,Physics Letters A 252 141-150 (SCI收录 第三作者).

推荐链接
down
wechat
bug