当前位置: X-MOL首页全球导师 国内导师 › 焦甲龙

个人简介

招生专业:船舶与海洋工程(二级学科:船舶与海洋结构物设计制造) 焦甲龙,男,工学博士,1990年10月生。2017年至今工作于华南理工大学土木与交通学院,葡萄牙里斯本大学CENTEC访问学者,2008年至2016年本硕博毕业于哈尔滨工程大学。多年来始终从事船舶水动力学、船舶结构力学和流固耦合动力学等方面的理论与试验研究。近五年,以第一作者身份在《Ocean Engineering》、《Applied Ocean Research》、《Journal of Marine Science and Technology-Japan》、《International Journal of Naval Architecture and Ocean Engineering》、《船舶力学》、《中国造船》、《振动与冲击》等行业期刊发表SCI/EI论文近40篇,发表国内外行业知名会议论文10余篇,多篇研究成果被领域权威学术组织ITTC耐波性Seakeeping委员会和ISSC载荷Loads委员会报告推荐引用。主持承担了国家自然科学基金、中央军委总装预研领域基金、中国博士后科学基金、广东省自然科学基金博士启动项目和面上项目等,以第一发明人授权受理国家发明专利10余项。曾多次获得哈工程本科生校级一等奖学金、博士研究生国家奖学金、德国劳氏船级社GL奖学金、中船工业708所MARIC奖学金,曾荣获广东省博士博士后100名创新人物、华南理工本科课堂教学质量优秀教师奖、中国钢结构协会海洋钢结构会议优秀论文奖、国际期刊Applied Ocean Research杰出贡献审稿人等荣誉称号。 工作经历 ² 2017.06 ~今,华南理工大学,土木与交通学院,船舶与海洋工程系,讲师,硕士生导师; ² 2020.10 ~ 2021.10,葡萄牙里斯本大学,海洋工程研究中心(CENTEC),访问学者(邀请人:Carlos Guedes Soares); ² 2017.06 ~ 2019.04,华南理工大学,土木与交通学院,船舶与海洋工程系,II类博士后,(合作导师:陈超核); 教育经历 ² 2013.09 ~ 2016.12,哈尔滨工程大学,船舶工程学院,船舶与海洋结构物设计制造,博士生(导师:任慧龙); ² 2012.09 ~ 2013.07,哈尔滨工程大学,船舶工程学院,船舶与海洋结构物设计制造,硕士生(导师:任慧龙); ² 2008.09 ~ 2012.07,哈尔滨工程大学,船舶工程学院,船舶与海洋工程,本科生; 获奖、荣誉称号 (1)广东省博士博士后100名创新人物(广东省人力资源和社会保障厅),2019年; (2)2018-2019学年第一学期本科课堂教学质量优秀教师奖(华南理工大学),2019年; (3)杰出贡献审稿人奖励(Top 10%)(行业期刊Applied Ocean Research),2018年; (4)船舶与海洋结构学术会议优秀论文奖(中国钢结构协会海洋钢结构分会),2018年; (5)优秀博士在校生荣誉称号(哈尔滨工程大学),2016年; (6)博士研究生国家奖学金(中华人民共和国教育部),2015年; (7)德国劳氏船级社GL奖学金(哈尔滨工程大学),2011年; (8)中国船舶工业集团公司第708研究所MARIC奖学金(哈尔滨工程大学),2011年。 科研项目 [1] 国家自然科学青年基金,短峰波中船舶大幅运动及砰击上浪载荷的时域水弹性方法研究,51909096,2020/01~2022/12,27万元,在研,主持; [2] 中央JW十三五ZB预研领域基金,方形波浪对船舶运动特性影响研究,61402070106,2019/08~2020/12,50万元,在研,主持; [3] 中国博士后科学基金面上项目,短峰不规则波中航行船舶三维时域非线性水弹性方法研究,2017M622696,2017/11~2019/05,5万元,已结题,主持; [4] 广东省自然科学基金,博士启动项目,南海海域中超大型海上浮体的环境载荷与水弹性响应分析,2018A030310378,2018/01~2020/12,10万元,在研,主持; [5] 广东省自然科学基金,面上项目,真实恶劣海况下船舶大幅运动与波浪载荷的时域水弹性方法研究,2020A1515011181,2019/10~2022/09,10万元,在研,主持; [6] 广州市科技计划基础与应用基础研究项目,南海海域中筏式波浪发电装置的流固耦合机理研究,2021/04~2023/03,5万元,在研,主持; [7] 中央高校科研基本业务费自然科学类项目,实际海况下船舶运动与波浪载荷的时域水弹性理论与试验研究,2020/01~2021/12,10万元,在研,主持; [8] 华南理工大学校级教研教改项目青年专项,海洋强国战略下的船舶与海洋工程专业学生实验与创新能力培养,C9203052,2020/05~2021/05,1万元,在研,主持; 科研创新 以第一发明人身份申请及公开国家发明专利13项、登记软件著作权2项: (1)一种破冰船水池模型实验装置,第一发明人,授权,201911005479.7; (2)一种实海域大尺度船模阻力试验系统,第一发明人,授权,201911030003.9; (3)一种操纵船舶双舵的连杆传动机构,第一发明人,授权,201911075588.6; (4)一种船舶水弹性试验的断轴式分段自航模型,第一发明人,授权,201911149964.1; (5)一种抑制船体梁水弹性振动的能量转换装置及其设计方法,第一发明人,201911105164.X; (6)一种测量船体剖面六分量波浪载荷的模型及方法,第一发明人,201911211081.9; (7)一种船舶水弹性试验的简化结构模型及其设计方法,第一发明人,201911250354.0; (8)一种采用U型龙骨梁的水弹性试验船模及其设计方法,第一发明人,201911292694.X; (9)一种基于阵列式加速度计的船舶六自由度运动测量方法,第一发明人,202010629505.X; (10)一种高耐波性船舶浮体装置,第一发明人,202010618354.8; (11)一种中试艇海试系统及其进行舰船总体性能测试的方法,第一发明人,202011128968.4; (12)一种船舶垂向运动响应的快速预报方法,第一发明人,202011116064.X; (13)豪华邮轮船体型线设计与自动生成软件[简称:船型生成软件] V1.0,软件著作权,第一完成人,登记号2020SR0216060; (14)随机海浪中船舶运动姿态短时预报软件[简称:SMSTP] V1.0,软件著作权,第一完成人,登记号2020SR0372230; 教学活动 (1)船体强度与结构设计(本科生必修课程); (2)船舶工程实验与测试技术(本科生必修课程); (3)船舶性能试验与测试(研究生专业课程); (4)论文写作与学术规范(学院研究生必修课程); (5)在2018~2020三年内指导本科生毕业设计共13人(1人获得校级优秀论文奖)。 指导学生情况 (1)2018~2020年期间指导的本科毕业设计论文:《船舶在波浪中运动与载荷响应的理论与试验研究》、《豪华邮轮型线生成软件设计开发》、《基于时间序列分析的舰船垂向运动极短期预报》、《船舶在波浪中运动与载荷响应的频域水弹性分析》、《南海海域中超大型海上浮体方案设计及环境载荷分析》、《基于BP神经网络的水面舰船耐波性评估方法》、《基于CFD的楔形体入水砰击载荷分析》、《船模阻力试验研究及波浪增阻与失速分析》、《基于CFD的海洋结构物入水砰击载荷分析》、《水面舰船风浪环境适应性综合评估方法研究》、《基于水池模型试验的船舶阻力性能分析》、《三维随机海浪及其畸形波的数值模拟分析》、《方形波和畸形波的数值模拟》…… (2)2020年指导完成的硕士毕业论文:《基于CFD的限制水域船体结构入水砰击载荷研究》、《超大型浮体水弹性响应分析与结构强度评估》…… (3)硕士研究生招生方向:势流理论、CFD、SPH等数值方法在船舶与海洋工程水动力学方面的应用;波浪作用下船舶及浮体的运动、载荷与结构响应研究;舰船总体性能研究及装备开发

研究领域

目前主要专攻的关键科学问题包括: (1)基于CFD与FEA耦合方法预报船舶与海洋浮体的运动、波浪载荷和水弹性响应; (2)基于OpenFOAM及SPHysics等开源代码的流体力学分析技术开发; (3)基于Rankine–Green混合源的时域匹配方法预报船舶与海洋浮体的耐波性与波浪载荷响应; (4)复杂海况下船舶与海洋浮体的运动、波浪载荷和水弹性响应的势流理论及CFD预报方法。 多年来,本人带领的研究小组围绕“船舶与海洋浮体水动力学与结构载荷”方向开展相关理论与试验研究,研究领域包括本专业主流研究领域: (1)波浪理论:水波理论及随机波浪理论、海浪测量与分析; (2)船舶耐波性:基于势流理论及CFD的耐波性预报、船舶极短期运动预报的系统辨识; (3)船舶波浪载荷:波浪载荷预报、砰击载荷预报、船体结构响应与强度评估; (4)船舶水弹性理论:线性频域理论、非线性时域理论、波激振动、砰击与颤振; (5)船模水动力学试验:水池模型耐波性、波浪载荷及水弹性试验、大尺度模型海上试验。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

期刊论文(SCI、EI检索): [1]Jialong Jiao, Huilong Ren, Shuzheng Sun, et al. A state-of-the-art large scale model testing technique for ship hydrodynamics at sea. Ocean Engineering, 2016, 123: 174–190. (SCI: WOS000382338600015, IF=3.068) [2]Jialong Jiao, Shuzheng Sun, Jide Li, et al. A comprehensive study on the seakeeping performance of high speed hybrid ships by 2.5D theoretical calculation and different scaled model experiments. Ocean Engineering, 2018, 160: 197–223. (SCI: WOS000442844600017, IF=3.068) [3]Jialong Jiao, Chaohe Chen, Shuzheng Sun, et al. Reproduction of ocean waves for large-scale model seakeeping measurement: The case of coastal waves in Puerto Rico & Virgin Islands and Gulf of Maine. Ocean Engineering, 2018, 153: 71–87. (SCI: WOS000428824200007, IF=3.068) [4]Jialong Jiao, Haicheng Yu, Chaohe Chen, et al. Time-domain numerical and segmented model experimental study on ship hydroelastic responses and whipping loads in harsh irregular seaways. Ocean Engineering, 2019, 185: 59–81. (SCI: WOS000482251300005, IF=3.068) [5]Jialong Jiao, Zhanyang Chen, Chaohe Chen, et al. Time-domain hydroelastic analysis of nonlinear motions and loads on a large bow flare ship in high irregular seas. Journal of Marine Science and Technology (Japan). 2020, 25(2): 426–454. (SCI: WOS000535234500007, IF=1.446) [6]Jialong Jiao, Huilong Ren, Shuzheng Sun. Assessment of surface ship environment adaptability: A fuzzy comprehensive evaluation method. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(4): 344–359. (SCI: WOS000381067100005, IF= 2.242) [7]Jialong Jiao, Chaohe Chen, Huilong Ren. A comprehensive study on ship motion and load responses in short-crested irregular waves. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 364–379. (SCI: WOS000458100000031, IF= 2.242) [8]Jialong Jiao, Shuzheng Sun, Huilong Ren. Predictions of wave induced ship motions and loads by large-scale model measurement at sea and numerical analysis. Brodogradnja/Shipbuilding, 2016, 67(2): 81–100. (SCI: WOS000379035200006, IF=1.045) [9]Jialong Jiao, Huilong Ren, Shuzheng Sun, et al. Investigation of a ship’s hydroelasticity and seakeeping performance by means of large-scale segmented self-propelling model sea trials. Journal of Zhejiang University - SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 468–484. (SCI: WOS000377467100005, IF=1.490) [10]Jialong Jiao, Huilong Ren, Christiaan Adika Adenya, et al. Development of a shipboard remote control and telemetry experimental system for large-scale model’s motions and loads measurement in realistic sea waves. Sensors, 2017, 17(11), 2485: 1–26. (SCI: WOS000416790500047, IF=3.275) [11]Jialong Jiao, Huilong Ren, Christiaan Adika Adenya. Experimental and numerical analysis of hull girder vibrations and bow impact of a large ship sailing in waves. Shock and Vibration, 2015: 1–10. Article ID 706163. (SCI: WOS000359212200001, IF=1.298) [12]Jialong Jiao, Huilong Ren, Shuzheng Sun, et al. Experimental investigation of wave-induced ship hydroelastic vibrations by large-scale model measurement in coastal waves. Shock and Vibration, 2016: 1–14. Article ID 9296783. (SCI: WOS000372627600001, IF=1.298) [13]Jialong Jiao, Yulin Zhao, Yufei Ai, et al. Theoretical and experimental study on nonlinear hydroelastic responses and slamming loads of ship advancing in regular waves. Shock and Vibration, 2018: 1–26. Article ID 2613832. (SCI: WOS000444871100001, IF=1.298) [14]Jialong Jiao, Yong Jiang, Hao Zhang, et al. Predictions of ship extreme hydroelastic load responses in harsh irregular waves and hull girder ultimate strength assessment. Applied Sciences. 2019, 9(2), 240: 1–24. (SCI: WOS000416790500047, IF=2.474) [15]Jialong Jiao, Huilong Ren. Characteristics of bow-flare slamming and hydroelastic vibrations of a vessel in severe irregular waves investigated by segmented model experiments. Journal of Vibroengineering, 2016, 18(4): 2475–2494. (SCI: WOS000381067100005, IF=0.398) [16] Jialong Jiao, Songxing Huang, Carlos Guedes Soares. Numerical simulation of ship motions in cross waves using CFD. Ocean Engineering, 2020. (SCI: Under Review, IF=3.068) [17] Jialong Jiao, Songxing Huang. CFD simulation of ship seakeeping performance and slamming loads in bi-directional cross wave. Journal of Marine Science and Engineering, 2020, 8(5), 312. (SCI: WOS000539274600013, IF=2.033) [18]Jialong Jiao, Huilong Ren, Carlos Guedes Soares. A review of large-scale model at-sea measurements for ship hydrodynamics and structural loads. Ocean Engineering, 2020. (SCI: Under Review, IF=3.068) [19] Jialong Jiao, Huilong Ren, Carlos Guedes Soares. Insight into the load characteristics of vertical and horizontal bending moments on ship in a seaway considering hydroelastic effects. Marine Structures, 2020. (SCI: Under Review, IF=2.708) [20]Jialong Jiao, Huilong Ren, Chaohe Chen. Model testing for ship hydroelasticity: A review and future trends. Journal of Shanghai Jiao Tong University (Science), 2017, 22(6): 641–650. (EI期刊:20174904502802) [21]Jialong Jiao, Yulin Zhao, Chaohe Chen, et al. Slamming and green water loads on bow-flare ship in regular head waves investigated by hydroelasticity theory and experiment. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 559–570. (EI期刊:20194207546817) [22]焦甲龙,孙树政,任慧龙. 水面舰船风浪环境适应性模糊综合评价方法. 哈尔滨工程大学学报, 2014, 35(6): 667–673. (EI期刊:20143017975764) [23]焦甲龙,孙树政,任慧龙. 一种非线性水波自由面模型及其海浪数值模拟. 华中科技大学学报, 2015, 43(4): 89–92. (EI期刊:20152000855287) [24]焦甲龙,任慧龙,杨虎. 分段模型波浪载荷试验槽型龙骨梁设计与研究. 振动与冲击, 2015, 34(14): 11–15. (EI期刊:20153301178067) [25]焦甲龙,任慧龙,孙树政. 实际海浪环境中大尺度模型波浪载荷试验技术研究. 中国造船, 2016, 57(1): 50–58. (EI期刊:20162002388218) [26]焦甲龙,任慧龙,于海成. 船舶在斜浪规则波中的载荷响应分析. 上海交通大学学报, 2016, 50(3): 407–412. (EI期刊:20162002388182) [27]焦甲龙,陈超核,任慧龙. 舰船大尺度模型耐波性试验海浪相似性分析. 哈尔滨工程大学学报, 2019, 40(1): 217–226. (EI期刊:20191306701078) [28] 焦甲龙,卿川东,任慧龙,等. 基于FEM–BEM法考虑弹振效应的超大型船舶结构疲劳损伤分析. 中国造船, 2019, 60(2): 117–130. (EI期刊:20194407599908) [29]焦甲龙,赵玉麟,张皓,等. 船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究. 振动与冲击, 2019, 38(20): 229–236. (EI期刊:20195107877579) [30]焦甲龙,孙树政,李积德,等. 基于系统辨识的大尺度模型耐波性试验实船响应外推预报. 船舶力学, 2019, 23(11): 1310–1319. (EI期刊:20195107876680) [31]焦甲龙,陈超核,任慧龙. 短峰波中船舶运动与波浪载荷的频域水弹性理论与试验研究,船舶力学, 2020, 24(4): 427–438. (EI期刊:20202008654319) [32]焦甲龙,陈超核,任慧龙. 长峰与短峰不规则波对船舶运动与载荷响应的影响分析,船舶力学, 2019. (EI期刊,已录用) [33]焦甲龙,陈超核,任慧龙,等. 真实恶劣海浪下船舶水弹性响应及砰击载荷的大尺度模型试验研究. 船舶力学, 2021. (EI期刊,已录用) [34]焦甲龙,黄松兴,童晓旺. 方形波浪中船舶运动特性的CFD数值模拟研究. 中国造船, 2020, 61(3): 140–151. (EI期刊) [35]焦甲龙,黄松兴,陈超核. 穿浪单体复合船型水动力性能的CFD数值模拟研究. 中国造船, 2020. (EI期刊) [36]黄松兴,焦甲龙,陈超核,等. 基于CFD的单体复合船水动力性能分析. 哈尔滨工程大学学报, 2021. (EI期刊,已录用) [37]黄松兴,焦甲龙,陈超核. 方形波浪中船舶运动特性及安全航行策略研究. 浙江大学学报, 2021. (EI期刊,已录用) [38] Songxing Huang, Jialong Jiao, Chaohe Chen. CFD prediction of ship seakeeping behavior in bi-directional cross wave compared with in uni-directional regular wave. Applied Ocean Research. 2020, 102426. (SCI, IF=2.753) [39] Songxing Huang, Jialong Jiao, Chaohe Chen. Numerical prediction of ship motion and slamming load characteristics in cross wave. Journal of Marine Science and Technology-Japan. 2020. (SCI, Under Review, IF=1.446) [40] Zhanyang Chen, Jialong Jiao, Hui Li. Time-domain numerical and segmented ship model experimental analyses of hydroelastic responses of a large container ship in oblique regular waves. Applied Ocean Research. 2017, 67: 78–93. (SCI: WOS000411544500007, IF=2.753) 会议论文(作小组报告): [1]Jialong Jiao, Shuzheng Sun, Huilong Ren. Integrative performance optimization of hybrid monohull based on numerical simulation and model experiment. ISOPE-2015, June 21–26, 2015: 617–622.(美国夏威夷) [2]Jialong Jiao, Huilong Ren, Shuzheng Sun. Measurement technique of ship hydrodynamic experiments by large-scale free running model sea trial. ISOPE-2016, June 24–July 1, 2016: 737–743.(希腊罗德岛) [3]Jialong Jiao, Siyuan Cai, Huilong Ren. Study on the load behavior of a large ship in head and oblique regular waves. ISOPE-2016, June 24–July 1, 2016: 426–433.(希腊罗德岛) [4]Jialong Jiao, Songxing Huang, Yuefu Yang, et al. A CFD Simulation Study of Ship Motions in Cross Sea Waves. ISOPE-2020, June 24–July 1, 2020.(中国上海) [5]焦甲龙,任慧龙,赵晓东,等. 不规则波中船舶波浪载荷与砰击载荷响应试验研究. 中国造船工程学会船舶力学学术委员会载荷与响应学组学术会议,2017.10.27–28.(中国成都) [6]Jialong Jiao, Chaohe Chen. Study on the wave load characteristics of a bow-flare ship sailing in regular waves. The 3rd International Conference on Safety and Reliability of Ships, Offshore & Subsea Structures, 23 May–24 May, 2018.(中国武汉) [7]焦甲龙,陈超核,任慧龙. 长峰与短峰不规则波对船舶运动与载荷响应的影响分析. 船舶与海洋结构学术会议暨中国钢结构协会海洋钢结构分会第八届理事会第二次会议,2018.10.19–21.(中国厦门) [8]焦甲龙,孙树政,李积德,等. 基于改进切片法的考虑流体粘性效应的船舶耐波性理论预报. 第五届全国船舶与海洋工程CFD会议,2018.11.22–24.(中国上海) [9]焦甲龙,陈超核,任慧龙,李辉. 随机海浪中船舶波浪载荷与砰击载荷的时域水弹性响应分析. 第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议,2019.08.16–19. pp: 905–911.(中国合肥) [10]焦甲龙,陈超核,任慧龙. 基于水弹性理论的船舶波浪载荷极值预报与结构极限强度评估. 2019年船舶结构力学学术会议,2019.08.21–23. pp: 119–125.(中国武汉) [11]Jialong Jiao, Songxing Huang, Chaohe Chen. Comparative investigation on the hydrodynamic behavior of high-performance monohulls by CFD. The 5th International Conference on Maritime Technology and Engineering, 16–19 November, 2020.(葡萄牙里斯本) [12]焦甲龙,黄松兴,陈超核. 短峰不规则波的CFD数值模拟方法研究. 第三十一届全国水动力学研讨会,2020.10.30–11.3. pp: 1–6.(中国厦门)

学术兼职

(1)中国造船工程学会船舶力学学术委员会高级会员; (2)广东省造船工程学会委员; (3)广东省自然科学基金通讯评审专家库成员; (4)《船舶力学》期刊审稿人(EI期刊); (5)Current Chinese Engineering Science期刊编委; (6)IEEE Access期刊审稿人(SCI期刊); (7)Ocean Engineering (OE)期刊审稿人(SCI期刊); (8)Applied Ocean Research (APOR)期刊审稿人(SCI期刊); (10)China Ocean Engineering (COE)期刊审稿人(SCI期刊); (11)Ships and Offshore Structures (SAOS)期刊审稿人(SCI期刊); (12)Engineering Analysis with Boundary Elements (EABE)期刊审稿人(SCI期刊); (13)Natural Hazards and Earth System Sciences (NHESS)期刊审稿人(SCI期); (14) International Journal of Maritime Engineering (IJME)期刊审稿人(SCI期刊); (15)Applied Mathematical Modelling (AMMOD)期刊审稿人(SCI期刊); (16)Polish Maritime Research (PMR)期刊审稿人(SCI期刊); (17)Advances in Civil Engineering (ACE)期刊审稿人(SCI期刊); (18)International Journal of Naval Architecture and Ocean Engineering (IJNAOE)期刊审稿人(SCI期刊); (19) Journal of Marine Science and Application (JMSA)期刊审稿人(ESCI期刊); (20)Maritime Technology and Research (MTR)期刊审稿人; (21)CFD Letters (CFDL)期刊审稿人; (22)American Journal of Naval Architecture and Marine Engineering (AJNAME)期刊审稿人; (23)Maritime Technology and Engineering (MARTECH)会议论文审稿人;

推荐链接
down
wechat
bug