近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
B. Zhong, M. Zhao*, S. Zhong, L. Lin, Y. Zhang. Deep Exponential Excitation Networks: Towards Stronger Attention Mechanism for Weak Fault Diagnosis[J]. Structural Health Monitoring, Accepted.(JCR1区,IF=6.6)
D. Liu, S. Zhong*, L. Lin, M. Zhao*, X. Fu, X. Liu. Feature-level SMOTE: Augmenting Fault Samples in Learnable Feature Space for Imbalanced Fault Diagnosis of Gas Turbines[J]. Expert Systems with Applications, 2024, 238(F): 122023.(中科院大类1区,Top期刊,IF=8.5)
D. Liu, S. Zhong*, L. Lin, M. Zhao*, X. Fu, X. Liu. Deep attention SMOTE: Data augmentation with a learnable interpolation factor for imbalanced anomaly detection of gas turbines[J]. Computers in Industry, 2023, 151: 103972.(中科院大类1区,Top期刊,IF=10)
D. Liu, S. Zhong*, L. Lin, M. Zhao*, X. Fu, X. Liu. CSiamese: a novel semi-supervised anomaly detection framework for gas turbines via reconstruction similarity[J]. Neural Computing and Applications, 2023, 35: 16403–16427. (JCR2区,IF=6)
D. Liu, S. Zhong*, L. Lin, M. Zhao*, X. Fu, X. Liu. Highly imbalanced fault diagnosis of gas turbines via clustering-based downsampling and deep siamese self-attention network[J]. Advanced Engineering Informatics, 2022, 54: 101725. (中科院大类1区,Top期刊,IF=8.8)
B. Zhong, M. Zhao*, S. Zhong, L. Lin, L. Wang. Mechanical compound fault diagnosis via suppressing intra-class dispersions: A deep progressive shrinkage perspective[J]. Measurement, 2022, 199: 111433.(JCR1区,IF=5.6)
S. Zhong*, D. Liu, L. Lin, M. Zhao*, X. Fu, F. Guo. CAE-WANN: A novel anomaly detection method for gas turbines via search space extension[J]. Quality and Reliability Engineering International, 2022, 38(6): 3116-3134. (JCR2区,IF=2.3)
M. Zhao*, X. Fu, Y. Zhang, L. Meng, B. Tang. Highly imbalanced fault diagnosis of mechanical systems based on wavelet packet distortion and convolutional neural networks[J]. Advanced Engineering Informatics, 2022, 51: 101535.(中科院大类1区,Top期刊,IF=8.8)
M. Zhao*, X. Fu, Y. Zhang, L. Meng, S. Zhong. Data augmentation via randomized wavelet expansion and its application in few-shot fault diagnosis of aviation hydraulic pumps[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3503213. (JCR1区,IF=5.6)
L. Meng, M. Zhao*, Z. Cui, X. Zhang, S. Zhong. Empirical mode reconstruction: Preserving intrinsic components in data augmentation for intelligent fault diagnosis of civil aviation hydraulic pumps[J]. Computers in Industry, 2022, 134: 103557.(中科院大类1区,Top期刊,IF=10)
S. Fu, Y. Zhang*, L. Lin, M. Zhao*, S. Zhong. Deep residual LSTM with domain-invariance for remaining useful life prediction across domains[J]. Reliability Engineering & System Safety, 2021, 216: 108012.(中科院大类1区,Top期刊,IF=8.1)
M. Zhao*, S. Zhong, X. Fu, B. Tang, S. Dong, M. Pecht. Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2587-2597, 2021.(中科院大类1区,Top期刊,IF=7.7,ESI高被引论文)
M. Zhao*, S. Zhong, X. Fu, B. Tang, M. Pecht. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4681-4690, 2020.
M. Zhao, B. Tang*, L. Deng, M. Pecht. Multiple wavelet regularized deep residual networks for fault diagnosis[J]. Measurement, 2020, 152: 107331.(JCR1区,IF=5.6)
M. Zhao, M. Kang*, B. Tang, M. Pecht. Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4696-4706.(ESI高被引论文,中科院大类1区,Top期刊,IF=7.7)
M. Zhao, M. Kang*, B. Tang, M. Pecht. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4290-4300.(中科院大类1区,Top期刊,IF=7.7,ESI高被引论文,Google Scholar>300)
M. Zhao, B. Tang*, Q. Tan. Bearing remaining useful life estimation based on time–frequency representation and supervised dimensionality reduction[J]. Measurement, vol. 86, pp. 41-55, 2016. (JCR1区,IF=5.6)
M. Zhao, B. Tang*, Q. Tan. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix[J]. Measurement Science and Technology, 2015, 26(8): 085008.(JCR2区,IF=2.4)
Yan Zhang*, Haifeng Zhang, Q. Huang, Y. Han, M. Zhao. DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects[J]. Expert Systems with Applications, Accepted.(中科院大类1区,Top期刊,IF=8.5)
S. Fu*, L. Lin, Y. Wang, F. Guo, M. Zhao, B. Zhong, S. Zhong. MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction[J]. Reliability Engineering & System Safety 241 (2024): 109696. (中科院大类1区,Top期刊,IF=8.1)
K. Zhang*, Z. Li, Q. Zheng, G. Ding, B. Tang, M. Zhao. Fault diagnosis with bidirectional guided convolutional neural networks under noisy labels[J]. IEEE Sensors Journal, 2023, 23(16): 18810-18820. (JCR1区,IF=4.3)
T. Zuo, K. Zhang*, Q. Zheng, X. Li, Z. Li, G. Ding, M. Zhao. A hybrid attention-based multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings[J]. Reliability Engineering & System Safety, 2023, 237: 109337.(中科院大类1区,Top期刊,IF=8.1)
Z. Yan, Z. Cui*, M. Zhao, S. Zhong, L. Lin. The carbon emission and maintenance-cost guided optimization of aero-engine clearance schedule[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-18.(JCR2区,IF=3.4)
Q. Li, B. Tang*, L. Deng, P. Xiong, M. Zhao. Cross-attribute adaptation networks: Distilling transferable features from multiple sampling-frequency source domains for fault diagnosis of wind turbine gearboxes[J]. Measurement, 2022, 200: 111570.(JCR1区,IF=5.6)
Z. Cui*, Z. Yan, M. Zhao, S. Zhong. Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network[J]. Chaos, Solitons & Fractals, 2022, 154: 111627.(JCR1区,IF=7.8)
Z. Yan, S. Zhong*, L. Lin, Z. Cui, M. Zhao. A step parameters prediction model based on transfer process neural network for exhaust gas temperature estimation after washing aero-engines[J]. Chinese Journal of Aeronautics, 2022, 35(3): 98-111. (中科院大类1区,Top期刊,IF=5.7)
S. Fu, S. Zhong*, L. Lin, M. Zhao. A Novel Time-Series Memory Auto-Encoder With Sequentially Updated Reconstructions for Remaining Useful Life Prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7114-7125. (中科院大类1区,Top期刊,IF=10.4)
B. Li, B. Tang*, L. Deng, M. Zhao. Self-Attention ConvLSTM and Its Application in RUL Prediction of Rolling Bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3518811.(JCR1区,IF=5.6)
S. Fu, S. Zhong*, L. Lin, M. Zhao. A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104199.(JCR1区,IF=8)
P. Xiong, B. Tang*, L. Deng, M. Zhao, X. Yu. Multi-block domain adaptation with central moment discrepancy for fault diagnosis[J]. Measurement, 2021, 169: 108516.(JCR1区,IF=5.6)
X. Zhou, X. Fu*, M. Zhao, S. Zhong. Regression model for civil aero-engine gas path parameter deviation based on deep domain-adaptation with Res-BP neural network[J]. Chinese Journal of Aeronautics, 2021, 34(1): 79-90.(中科院大类1区,Top期刊,IF=5.7)
T. Song, B. Tang*, M. Zhao, L. Deng. An accurate 3-D fire location method based on sub-pixel edge detection and non-parametric stereo matching[J]. Measurement, 2014, 50: 160-171. (JCR1区,IF=5.6)
X. Zhou, X. Fu*, M. Zhao, S. Zhong. Regression Model for Civil Aero-engine Gas Path Parameter Deviations Based on Res-BP Neural Network[C]//International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 2019: 188-196.
S. Zhong, D. Liu, L. Lin, M. Zhao, X. Fu, F. Guo. A novel anomaly detection method for gas turbines using weight agnostic neural network search[C]//Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), 2020: 1-6.
D. Liu, S. Zhong, L. Lin, M. Zhao, X. Xia, X. Fu, Z. Cui. A Novel Performance Prediction Method for Gas Turbines Using the Prophet Model[C]//International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 2021: 203-208.
中文论文
截至目前,发表EI论文5篇,其中通讯作者2篇。
王月, 赵明航*, 刘雪云, 林琳, 钟诗胜. 基于孪生减元注意力网络的航空发动机故障诊断[J]. 航空动力学报, 已录用.
钟诗胜, 陈曦, 赵明航*, 张永健. 引入词集级注意力机制的中文命名实体识别方法[J]. 吉林大学学报(工学版), 2022, 52(05): 1098-1105.
汤宝平*, 熊学嫣, 赵明航, 谭骞.多共振分量融合CNN的行星齿轮箱故障诊断[J]. 振动、测试与诊断, 2020, 40(3): 507-512.
熊鹏, 汤宝平*, 邓蕾, 赵明航. 基于动态加权密集连接卷积网络的变转速行星齿轮箱故障诊断[J]. 机械工程学报, 2019, 55(07): 52-57.
苏祖强, 汤宝平*, 赵明航, 秦毅. 基于多故障流形的旋转机械故障诊断[J]. 振动工程学报, 2015, 28(02): 309-315.