近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Tyynismaa H Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria, Taru Hilander, Xiao-Long Zhou, Svetlana Konovalova, Fu-Ping Zhang, Liliya Euro, Dmitri Chilov, Matti Poutanen , Joseph Chihade, En-Duo Wang*, Nucleic Acids Res., 2018, 46(2), 849-860.
2. A natural non-Watson-Crick base pair in human mitochondrial tRNAThr causes structural and functional susceptibility to local mutations, Yong Wang, Qi-Yu Zeng, Wen-Qiang Zheng, Quan-Quan Ji, Xiao-Long Zhou*, En-Duo Wang*, Nucleic Acids Res., 2018, 46(9), 4662-4676.
3. A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities, Yun Chen, Zhi-Rong Ruan, Yong Wang, Qian Huang, Mei-Qin Xue, Xiao-Long Zhou , En-Duo Wang*, Nucleic Acids Res., 2018, 46,(7), 3643–3656.
4. Acetylation of lysine ε-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli, Qing Ye, Quan-Quan Ji, Wei Yan, Fang Yang, En-Duo Wang*, J. Biol. Chem., 2017, 292 (25),10709-10722.
5. Structural basis for substrate binding and catalytic mechanism of a human RNA: m5C methyltransferase NSun6, Ru-Juan Liu, Tao Long, Jing Li, Hao Li, En-Duo Wang*, Nucleic Acids Res., 2017,45(11), 6684–6697.
6. Self-protective responses to norvaline-induced stress in a leucyl-tRNA synthetase editing-deficient yeast strain, Quan-Quan Ji, Zhi-Peng Fang, Qing Ye, Cheng-Wu Chi, En-Duo Wang*, Nucleic Acids Res., 2017,45(12), 7367-7381.
7. Translational quality control by bacterial threonyl-tRNA synthetases, Xiao-Long Zhou, Yong Wang, Ru-Juan Liu, Mei-Qin Xue, En-Duo Wang*, J. Biol. Chem., 2016, 291(40), 21208-21221.
8. A human disease-causing point mutation in mitochondrial threonyl-tRNA synthetase induces both structural andfunctional defects, Yong Wang, Xiao-Long Zhou, Zhi-Rong Ruan, Ru-Juan Liu, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem., 2016, 291(12), 6507-6520.
9. C-terminal domain of leucyl-tRNA synthetase from pathogenic Candida albicans recognizes both tRNASer and tRNALeu, Quan-Quan Ji, Zhi-Peng Fang, Qing Ye, Zhi-Rong Ruan, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2016, 291 (7) , 3613-3625.
10. A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia, Ying Yang, Wei Liu, Zhi-Peng Fang, Juan Shi,, Feng-Yu Che,, Chun-Xia He,, Li-Bo Yao, En-Duo Wang*, Yuan-Ming Wu*, Human Mutation, 2016, 37 (2),165-169.
11. Identification of lethal mutations in yeast threonyl-tRNA synthetase which reveals critical residues in its human homolog, Zhi-Rong Ruan, Zhi-Peng Fang, Qing Ye, Hui-Yan Lei, Gilbert Eriani, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2015, 290(3), 1664-78.
12. Modulation of aminoacylation and editing properties of leucyl-tRNA synthetase by a conserved structural module, Wei Yan, Qing Ye, Min Tan, Xin Chen, Gilbert Eriani , En-Duo Wang*, J. Biol. Chem., 2015,290(19), 12256-67.
13. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase, Mi Zhou, Tao Long , Zhi-Peng Fang, Xiao-Long Zhou, Ru-Juan Liu , En-Duo Wang*, RNA Biol., 2015,12(8), 900-11.
14. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily, Ru-Juan Liu, Tao Long, Mi Zhou, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res.,2015, 43(15), 7489-503.
15. Degenerate CP1 domain From Human Mitochondrial Leucyl-tRNA Synthetase, Qing Ye, Meng Wang, Zhi-Peng Fang, Zhi-Rong Ruan, Quan-Quan Ji, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2015, 290(40),24391-402.
16. Calpain cleaves most components in the multiple aminoacyl-tRNA synthetase complex and affects their functions, Hui-Yan Lei, Xiao-Long Zhou, Zhi-Rong Ruan, Wei-Chen Sun , Gilbert Eriani,En-Duo Wang*, J. Biol. Chem., 2015, 290(43),26314-27.
17. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity., Qian Huang, Xiao-Long Zhou, Zhi-Peng Fang, Lei HY, Qing-Hua Hu, Peng Yao, En-Duo Wang*, RNA, 2015,20, 1440-50.
18. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Lan-Tao Gou, Peng Dai, Jian-Hua Yang, Yuanchao Xue, Yun-Ping Hu, Yu Zhou, Jun-Yan Kang, Xin Wang,Hairi Li, Min-Min Hua, Shuang Zhao, Si-Da Hu, Li-Gang Wu, Hui-Juan Shi, Yong Li, Xiang-Dong Fu, Liang-Hu Qu, En-Duo Wang*, Mo-Fang Liu*, Cell Res., 2015,25(2), 266.
19. Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNALeu in the archaeal mode, Zhi-Peng Fang, Meng Wang, Zhi-Rong Ruan, Min Tan, Ru-Juan Liu, Mi Zhou, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res., 2014, 42(8), 5109–24.
20. The mRNA of Human Cytoplasmic Arginyl-tRNA Synthetase Recruits Prokaryotic Ribosomes Independently, Fang Yang, Quan-Quan Ji, Liang-Liang Ruan, Qing Ye, En-Duo Wang*, J. Biol. Chem., 2014,289(30), 20953-59.
21. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading, Xiao-Long Zhou, Zhi-Rong Ruan, Meng Wang, Zhi-Peng Fang, Yong Wang, Yun Chen, Ru-Juan Liu, Gilbert Eriani, En-Duo Wang* ,Nucleic Acids Res.,2014, 42(22), 13873-86.
22. Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity, Xiao-Long Zhou, Zhi-Peng Fang, Zhi-Rong Ruan, Meng Wang, Ru-Juan Liu, Min Tan, Anella FM, En-Duo Wang*, Nucleic Acids Res., 2014,41(21) 9825-38.
23. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Qing-Hua Hu, Ru-Juan Liu, Zhi-Peng Fang, Jiong Zhang , Ying-Ying Ding , Min Tan, Meng Wang, Wei Pan , Hu-Chen Zhou , En-Duo Wang*, Scientific Report,2013, 3,2475.
24. Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote, Xiao-Long Zhou, Zhi-Rong Ruan, Qian Huang, Min Tan, En-Duo Wang* , Nucleic Acids Res., 2013, 41(1), 302-14.
25. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing, Qing-Hua Hu, Qian Huang, En-Duo Wang* , Nucleic Acids Res., 2013,41(3), 1859-72.
26. Leucine-Specific Domain (LSD) Modulates the Aminoacylation and Proofreading Functional Cycle of Bacterial Leucyl-tRNA Synthetase, Wei Yan, Min Tan, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2013,41(9), 4988–98.
27. The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation, Min Tan, Meng Wang, Xiao-Long Zhou, Wei Yan, Gilbert Eriani, En-Duo Wang* , Nucleic Acids Res.,2013,41(10), 5513–23.
28. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase,TrmL. Ru-Juan Liu, Mi Zhou, Zhi-Peng Fang, Meng Wang, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res., 2013,41(16),7828-42.
29. Inter-domain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase, Min Tan,Bin Zhu, Ru-Juan Liu, Xin Chen, Xiao-Long Zhou, En-Duo Wang*, Biochem. J., 2013, 449,123-31.
30. Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Liang-Liang Ruan, Xiao-Long Zhou, Min Tan, En-Duo Wang*, Biochem. J., 2013,450, 243-52.
31. Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations, Meng Wang, Xiao-Long Zhou, Ru-Juan Liu,Zhi-Peng Fang, Mi Zhou, Gilbert Eriani, En-Duo Wang* , Biochem. J., 2013, 453(3), 455-65.
32. piRNA-Triggered MIWI Ubiquitination and Removal by APC/C in Late Spermatogenesis, Shuang Zhao, Lan-Tao Gou, Man Zhang, Li-Dong Zu, Min-Min Hua,Ye Hua,Hui-Juan Shi,Yong Li,Jinsong Li,Dangsheng Li, En-Duo Wang*, Mo-Fang Liu* , Dev. Cell, 2013, 24(1),13-25.
33. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain, Qian Huang, Peng Yao, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2012, 40, 10463-77.
34. A naturally occurring nonapeptide functionally compensates the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity, Min Tan, Wei Yan, Ru-Juan Liu, Meng Wang, Xin Chen, Xiao-Long Zhou and En-Duo Wang*, Biochem. J. 2011, 443,477-84.
35. Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase, Xin Chen, Jing-Jing Ma, Min Tan, Peng Yao, Qing-Hua Hu, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2011,39(1), 235–47.
36. Role of tRNA amino acid-accepting end in aminoacylation and its quality control, Xiao-Long Zhou, Dao-Hai Du, Min Tan, Hui-Yan Lei, Liang-Liang Ruan, Gilbert Eriani, En-Duo Wang, Nucleic Acids Res., 2011, 39, 8857-68.
37. Peripheral insertion modulates editing activity of the isolated CP1 domain of leucyl-tRNA synthetase, Ru-Juan Liu, Min Tan, Dao-Hai Du, Gilbert Eriani, En-Duo Wang*, Biochem. J., 2011, 440(2), 217-27.
38. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases, Xiao-Long Zhou, Meng Wang, Min Tan, Qian Huang, Gilbert Eriani, and En-Duo Wang, Biochem. J. , 2010, 429, 505-13 .
39. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690. Xiao-Long Zhou, Min Tan, Meng Wang, Xin Chen, and En-Duo Wang*, Biochem. J. , 2010, 430(2), 325-33.
40. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase, Min Tan, Bin Zhu, Xiao-Long Zhou, Ran He, Xin Chen, Gilbert Eriani and En-Duo Wang, J. Biol. Chem. , 2010, 285(5), 3235-44.
41. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases, Xiao-Long Zhou, Meng Wang, Min Tan, Qian Huang, Gilbert Eriani, and En-Duo Wang*, Biochem. J. , 2010, 429, 505-13.
42. MicroRNA-155 functions as an oncomiR in breast cancer by targeting the suppressor of cytokine signaling-1 gene. Shuai Jiang, Hong-Wei Zhang, Ming-Hua Lu, Xiao-Hong He, Yong Li, Hua Gu, Mo-Fang Liu, En-Duo Wang*, Cancer Res., 2010, 70(8), 3119-27.
43. tRNA-independent pre-transfer editing by class I leucyl-tRNA synthetase, Bin Zhu, Peng Yao, Min Tan, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem. , 2009, 284,3418-24.
44. Two Non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity,Ran He, Li-Dong Zu, Peng Yao, Xin Chen , En-Duo Wang*, BBA-Protein and Proteomics, 2009, 1794, 347–54.
45. Leucyl-tRNA synthetase from the early diverging eukaryote Giardia lamblia, Xiao-Long Zhou, Peng Yao, Liang-Liang Ruan, Bin Zhu, Jun Luo, Liang-Hu Qu , En-Duo Wang*, Biochemistry (US), 2009, 48, 1340–47.
46. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing, Xiao-Long Zhou, En-Duo Wang*, Biochem. Biophys. Res. Commun, 2009, 386, 510-15.
47. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing, Xiao-Long Zhou, Bin Zhu, En-Duo Wang*, J. Biol. Chem., 2008, 283, 36608-16.
48. Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain,Peng Yao, Xiao-Long Zhou, Ran He, Mei-Qin Xue, Yong-Gang Zheng, Yue-Fei Wang, En-Duo Wang*, J. Biol. Chem., 2008,283, 22591-600.
49. Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps, Peng Yao, Bin Zhu, Sophie Jaeger, Gilbert Eriani , En-Duo Wang*, Nucleic Acids Res., 2008, 36(8), 2728-38.
50. A present-day aminoacyl-tRNA synthetase with ancestral editing properties, Bin Zhu, Ming-Wei Zhao, Gilbert Eriani and En-Duo Wang,RNA, 2007, 13,15-20.
51. The split leucine-specific domain of leucyl-tRNA synthetase from Aquifex aeolicus,Jing-Jing Ma, Ming-Wei Zhao, En-Duo Wang*, Biochemistry (US), 2006, 45, 14809-16.
52. Two forms of human cytoplasmic arginyl-tRNA synthetase produced from two translation initiations by a single mRNA, Yong-Gang Zheng, Hui Wei, Chen Ling, Min-Gang Xu, En-Duo Wang*, Biochemistry (US), 2006, 45, 1338-44.
53. Leucyl-tRNA synthetase editing site of the ancestral bacteria Aquifex aeolicus contains relics of synthetase evolution, Ming-Wei Zhao, Bin Zhu, Rui Hao, Min-Gang Xu, Gilbert Eriani, En-Duo Wang, EMBO J. 2005, 24, 1430–39.
54. A T-stem slip in human mitochondrial tRNALeu(CUN) regulates its charging capacity, Rui Hao, Ming-Wei Zhao, Zhan-Xi Hao, Yong-Neng Yao, En-Duo Wang*, Nucleic Acids Res.,2005, 33(11), 3606–13.
55. The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex, Chen Ling, Yong-Neng Yao, Yong-Gang Zheng, Hui Wei, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, J. Biol. Chem. , 2005, 280(41), 34755-63.
56. Two distinct domains of the b subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection, Yong-Gang Zheng, Hui Wei, Chen Ling, Franck Martin, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Research, 2004, 32, 3294-303.
57. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices, Min-Gang Xu, Ming-Wei Zhao, En-Duo Wang, J. Biol. Chem., 2004, 279, 32151-58.
58. Reduction of mitochondrial tRNALeu(UUR) aminoacylation by some MELAS -associated mutations, Rui Hao, Yong-Neng Yao, Yong-Gang Zheng, Min-Gang Xu, En-Duo Wang*, FEBS Lett. , 2004, 578(1-2), 135-9.
59. Escherichia coli tRNA4Arg(UCU) induces a constrained conformation of the crucial Ω-loop of arginyl-tRNA synthetase, Yong-Neng Yao, Qing-Shuo Zhang, Xian-Zhong Yan, Guang Zhu, En-Duo Wang*, Biochem. Biophys. Res. Commun., 2004, 313(1), 129-34.
60. Influence of 252T mutations of Escherichia coli leucyl-tRNA synthetase on discrimination of amino acids and cell viability, Min-Gang Xu, Juan Li, Xing Du, En-Duo Wang*, Biochem Biophys Res Commun. 2004, 318(1), 11-6.
61. High-level expression and single-step purification of leucyl-tRNA synthetase from Aquifex aeolicus, Chen Ling, Yong-Gang Zheng, En-Duo Wang*, Protein Expression and Purification, 2004, 36, 146-9.
62. Tertiary-structure base pairs between D- and TyC- loops of Escherichia coli tRNALeu play important roles in both aminoacylation and editing, Xing Du, En-Duo Wang*, Nucleic Acids Res., 2003, 31(11), 2865-72.
63. Arginyl-tRNA synthetase with signature sequence KMSK from Bacillus stearothermophilus, Juan Li, Yong-Neng Yao, Mo-Fang Liu, En-Duo Wang*, Biochem. J. , 2003, 376(3), 773-9.
64. Enzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases, Ming-Wei Zhao, Rui Hao, Jian-Feng Chen, Franck Martin, Gilbert Eriani, En-Duo Wang*, Biochemistry(US), 2003, 42(25),7694-700.
65. The processing of human mitochondrial leucyl-tRNA synthetase in the insect cells, Yong-Neng Yao, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, FEBS Lett. , 2003, 534(1-3), 139-42.
66. Substrate-induced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by 19F NMR spectroscopy, Yong-Neng Yao, Xian-Zhong Yan, Qing-Shuo Zhang, Guang Zhu, En-Duo Wang*, FEBS Lett. , 2003, 547(1-3), 197-200.
67. E292 is important for the aminoacylation activity of Escherichia coli leucyl-tRNA synthetase, Xing Du, En-Duo Wang*, Journal of Protein Chemistry, 2003, 22(1), 71-6.
68. Human mitochondrial leucyl-tRNA synthetase with high activity produced from Escherichia coli, Yong-Neng Yao, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, Protein Expression and Purification, 2003, 30(1), 112-6.
69. An insertion mutant of LeuRS with 116 amino acid residues has full activity, Huang Ying, Ling Chen, Li Tong, Tong Geng-Lei, Wang En-Duo, Acta Biochimica et Biophysica Sinica, 2003, 35(3), 225-9.
70. 64. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacterium Aquifex aeolicus, Min-Gang Xu, Jian-Feng Chen, Franck Martin, Ming-Wei Zhao, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem., 2002, 277 (44), 41590-96.
71. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli, Liu Wen, Liu Mo-Fang, Xia Xia, Wang En-Duo*, Ying-Lai Wang, Acta Biochimica et Biophysica Sinica, 2002,34(2),131-7.
72. Discrimination of tRNALeu isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing, Xing Du, En-Duo Wang*, Biochemistry, 2002, 41, 10623-28.
73. A negative element located in the upstream flanking region of the gene encoding arginyl-tRNA synthetase (argS) from Escherichia coli, Liu Mo-Fang, Xu Min-Gang, Xia Xian, Wang En-Duo*, Ying-Lai Wang, Acta Biochimica et Biophysica Sinica, 2001, 33(6), 494-8.
74. The Effect of alanine-293 replacement on the activity, ATP-binding, and editing of Escherichia coli leucyl-tRNA synthetase, Jian-Feng Chen, Tong Li, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 2001, 40(5), 1144-1149.
75. Two novel engineered bacteria for secretory expression of glutaryl 7-amino cephalosporanic acid acylase, Yong-Gang Zheng, Yong Li, Jian-Feng Chen, Wei-Hong Jiang, Guo-Ping Zhao, En-Duo Wang*, Biotechnology Letters, 2001, 23(21), 1781-7.
76. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function, Jian-Feng Chen, Ni-Ni Guo, Tong Li, En-Duo Wang and Ying-Lai Wang, Biochemistry (US),2000,39(22),6726-31.
77. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for aminoacylation activity, Tong Li, Nini Guo, Xian Xia, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(40), 13063-9.
78. A single base substitute in the variable pocket of yeast tRNAArg eliminates species-specific aminoacylation, Wen Liu, Yi-Wei Huang, Gilbert Eriani, Jean Gangloff, En-Duo Wang*, Ying-Lai Wang, Biochimica et Biophysica Acta (Netherlands), 1999, 1473, 2-3, 356-62.
79. Discrimination of tRNALeu isoacceptors by insertion mutant of Escherichia coli leucyl-tRNA synthetase, Tong Li, Yong Li, Ni-Ni Guo, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(28), 9084-8.
80. Effect of the cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli, Mo-Fang Liu, Yi-Wei Huang, Jin-fu Wu, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(34), 11006-11.
81. High-level expression and single-step purification of leucyl-tRNA synthetase, Jian-Feng Chen, En-Duo Wang*, Ying-Lai Wang, Protein Expression and Purification, 1999, 15(1), 115-20.
82. A modified procedure for fast purification of T7 RNA polymerase, Yong Li, En-Duo Wang*, Ying-Lai Wang, Protein Expression and Purification, 1999, 16(2), 355-8.
83. Biosynthesis and characterization of 4-flurotryptophan-labeled Escherichia coli arginyl-tRNA synthetase, Qing-Shuo Zhang, Li Shen, En-Duo Wang, Ying-Lai Wang, J. Biol. Chem., 1999,18(2), 187-92.
84. T7 RNA polymerase transcription of Escherichia coli isoacceptors tRNALeu, Li Yong, Chen Jian-Feng, Wang En-Duo *, Wang Ying-Lai, Science in China (series C), 1999, 42(2), 185-90.
85. Post-translational processing and subunits reconstitution in vivo of cephalosporin acylase from pseudomonas sp130, Yong Li, Jian-Feng Chen, Wei-Hong Jiang, Xiang Mao, Guo-Ping Zhao, En-Duo Wang*, European Journal of Biochemistry, 1999, 262(3), 713-719.
86. The role of tryptophan residues in E. coli arginyl-tRNA synthetase, Qing-Shuo Zhang, En-Duo Wang, Ying-Lai Wang, Biochemica et Biophysica Acta, 1998, 1387, 136-142.
87. Overproduction and purification of Escherichia coli tRNALeu, Li Yong, Wang En-Duo* and Wang Yinglai, Science in China (series C), 1998, 41(3), 225-31.
88. Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase, Yong Li, Wei-Hong Jiang, Yun-Liu Yang, Guo-Ping Zhao, En-Duo Wang*, Protein Expression and Purification, 1998, 12,233-8.