当前位置: X-MOL首页全球导师 国内导师 › 王恩多

个人简介

教育背景 1978-07--1981-07 中国科学院上海生物化学研究所 硕士研究生 1965-07--1969-07 中国科学院上海生物化学研究所 硕士研究生 学习工作经历 1965-1969和1978-1981两次中国科学院上海生物化学研究所研究生毕业 1986年任生化所副研究员 1993年任生化所研究员,博士生导师 1984-1987年在美国加州大学戴维斯分校医学院访问 1992年10-12月, 1994年10-12月,1998年1-4月在法国斯特拉丝堡法国国家科学研究中心分子与细胞研究所合作研究 1996年9月-1997年2月在香港科学技术大学生物化学系进行研究工作 2000年6-8月,2003年9-10月2006年7-9在加拿大Laval大学生物化学系进行合作研究 2005年当选中国科学院院士,2006年当选为第三世界科学院院士。 教授课程 高级生化酶学 科研项目 ( 1 ) 氨基酰-tRNA合成酶的合成和编校功能研究, 主持, 省级, 2009-09--2011-08 ( 2 ) 贾第虫亮氨酰-tRNA合成酶晶体结构研究和抑制剂筛选, 参与, 国家级, 2011-01--2013-12 ( 3 ) tRNALeu 3'末端在氨基酰化和编校反应中的作用, 参与, 国家级, 2011-01--2013-12 ( 4 ) tRNA对蛋白质合成质量控制的作用及其新功能的研究, 主持, 国家级, 2012-01--2016-12 ( 5 ) 蛋白质的生成、修饰与质量控制, 主持, 国家级, 2011-09--2016-09 ( 6 ) 链霉菌两类亮氨酸tRNA与相关蛋白质的相互作用, 主持, 国家级, 2015-01--2018-12 ( 7 ) 大肠杆菌氨基酰-tRNA合成酶的乙酰化, 主持, 国家级, 2016-01--2019-12 ( 8 ) 蛋白质生物合成的质量控制, 主持, 国家级, 2012-01--2016-08 ( 9 ) 蛋白质稳态的氧化还原调控, 参与, 国家级, 2017-08--2022-07 参与会议 (1)哺乳动物唯一的氨基酰-tRNA合成酶重复基因的功能 2015年度生物化学与细胞生物学研究所年会 周小龙,王恩多 2016-01-16 (2)Translational quality control mechanism mediated by aminoacyl-tRNA synthetase 国家重大科学研究计划(2012CB911000)年度总结交流会 周小龙,王恩多 2015-11-29 (3)LeuRS C末端结构域介导白色念珠菌遗传密码子模糊性 第十二届亚洲线粒体生物医学及研究学会国际会议 纪泉泉,王恩多 2015-11-14 (4)Mitochondrial threonyl-tRNA synthetase and human disease 第十二届亚洲线粒体生物医学及研究学会国际会议 周小龙,王恩多 2015-11-14 (5)tRNA recognition by two bacterial 2′-O-methyltransferases from the SPOUT superfamily 刘如娟,王恩多 2015-10-19 (6)氨基酰-tRNA合成酶的乙酰化修饰 第五届全国“跨学科蛋白质研究”学术讨论会 叶青,王恩多 2015-10-18 (7)The only aaRS-duplicated gene in higher eukaryotes 第五届全国“跨学科蛋白质研究”学术讨论会 陈云,王恩多 2015-10-18 (8)Human threonyl-tRNA synthetase and disease 2015年氨基酰-tRNA合成酶国际学术大会 周小龙,王恩多 2015-10-18 (9)tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily 第五届全国“跨学科蛋白质研究”学术讨论会 龙韬,王恩多 2015-10-18 (10)Investigation of 2′-O-methylation modifications at the anticodon loop region of tRNAs 第十一次全国基因功能与表观遗传调控学术研讨会 刘如娟,王恩多 2015-10-13 (11)LeuRS C末端结构域介导白色念珠菌遗传密码子模糊性 第十二届全国酶学学术讨论会 纪泉泉,王恩多 2015-09-19 (12)A human disease-causing point mutation in mitochondrial threonyl-tRNA synthetase induces both structural and functional defects 第十二届全国酶学学术讨论会 周小龙,王恩多 2015-09-19 (13)Identification of lethal mutations in yeast threonyl-tRNA synthetase which reveals critical residues in its human homolog 阮志荣,王恩多 2015-02-23 (14)Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog 周小龙,王恩多 2015-02-23 (15)The tRNA recognition mechanism of bacterial tRNA Xm32 methyltransferase, TrmJ 生化与细胞所2014年度学术年会 龙韬,王恩多 2015-01-15 (16)亮氨酸tRNA第34位2'-O-甲基修饰的机理研究 第四届全国“跨学科蛋白质研究”学术讨论会 周觅 ,刘如娟,王恩多 2013-10-13 (17)以肺炎球菌亮氨酰-tRNA合成酶的活性中心为靶筛选新型抗菌素 第十一届全国酶学学术讨论会 王恩多 2013-05-17 (18) Leucyl-tRNA synthetase from human pathogen Candida albicans is naturally deficient in tRNA-dependent pre-transfer editing toward norvaline 第十一 届全国酶学学术讨论会暨邹承鲁诞辰90 周年纪念会 周小龙,王恩多 2013-05-17 (19)Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote 第七届全国核糖核酸(RNA)学术研讨会 周小龙,王恩多 2012-11-08 (20)A unique SPOUT methyltransferase catalyzes the 2'-O-methylation of tRNALeu isoacceptors 刘如娟,王恩多 2012-10-23 (21)酵母亮氨酸-tRNA合成酶与tRNALeu的相互作用 全国生物化学与分子生物学学术大会 王恩多 2012-08-25 (22)Peripheral insertion modulates editing activity of the isolated CP1 domain of leucyl-tRNA synthetase 刘如娟,王恩多 2011-09-26 (23)Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase 王恩多 2011-05-06 (24)Peripheral insertion motif modulates editing activity of the isolated CP1 domain of leucyl-tRNA synthetase 刘如娟,王恩多 2010-12-06 (25)The aminoacylation of Escherichia coli tRNALeu (CAG) is regulated by Mg2+-dependant base-pair closing-opening kinetics 郝占西,王恩多 2010-01-28 (26)The association of human cytoplasmic leucyl-tRNA synthetase with other two components in MSC and its editing function 马晶晶,王恩多 2008-09-07 (27)Leucyl-tRNA synthetase from hyperthermophilic bacterium Aquifex aeolicus possesses many evolutionary remnant characteristics 王恩多 2008-07-19 (28)Function association between human cytoplasmic leucyl-tRNA and glutamyl-prolyl-tRNA synthetases enhances aminoacylation of tRNAPro 陈鑫,王恩多 2008-07-19 (29)tRNA-dependent pre-transfer editing by E. coli leucyl-tRNA synthetase. 谭敏,王恩多 2008-07-19 (30)编校 Cys- t RNAPro 的一条新途径 第九届全国酶学学术讨论会 周小龙,王恩多 2008-05-15 (31)A novel pathway to edit Cys-tRNAPro 周小龙,王恩多 2007-11-07 (32)超嗜热菌 Aquifex aeolicus 亮氨酰 -tRNA 合成酶的研究 2007年全国工业生物化学与分子学学术大会 王恩多 2007-08-10 (33)超嗜热菌 Aquifex aeolicus 亮氨酰 -tRNA 合成酶的研究 第六届海峡两岸生物医学和生物工程学术会议——今日的生命科学 王恩多 2006-08-31 专利 1. 戊二酰-7-氨基头孢烷酸酰化酶,发明, 2002, 第 1 作者,专利号:ZL 97106775 2. 分泌型高产戊二酰-7-氨基头孢烷酸酰化酶的新菌株,专利授权号:发明, 2003, 第 1 作者, ZL 00 1 25105.8 3. 带有氯霉素抗性的分泌高产戊二酰-7-氨基头孢烷酸酰化酶的菌株,发明, 2003, 第 1 作者,专利号:ZL 00 1 25106.6 4.一种化合物及其衍生物治疗肺炎球菌感染性疾病的用途, 发明, 2013, 第 1 作者, 专利号: 201310248221.6 获奖 1. 2000年获上海市自然科学一等奖 2. 2001年国家自然科学奖二等奖 3. 1998-2001年上海市劳动模范 4. 2001年上海市“三八”红旗手标兵 5. 2002年第二届上海市巾帼创新奖 6. 2003年度中国科学院宝洁优秀研究生导师奖 7. 2005年中国科学院优秀研究生导师奖 8. 2006年上海市三八红旗荣誉奖章 9. 2006年中国科学院研究生院优秀导师 10. 2006年中国科学院优秀博士学位论文优秀导师奖 11. 2006年何梁何利科学与技术进步奖 12. 2007年全国五一劳动奖章 13. 2008年中国科学院杰出贡献教师 14. 2008年上海自然科学奖二等奖 15. 2009年全国归侨侨眷先进个人 16. 2010年上海市侨界“十杰” 17. 2010年4月全国先进工作者 18. 2013年中科院大学BHP Billiton导师科研奖 19. 2016年上海科普教育创新奖 科普杰出人物奖 20. 2017年荣获2016年上海市“劳模年度人物”荣誉称号

研究领域

核酸与蛋白质相互作用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Tyynismaa H Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria, Taru Hilander, Xiao-Long Zhou, Svetlana Konovalova, Fu-Ping Zhang, Liliya Euro, Dmitri Chilov, Matti Poutanen , Joseph Chihade, En-Duo Wang*, Nucleic Acids Res., 2018, 46(2), 849-860. 2. A natural non-Watson-Crick base pair in human mitochondrial tRNAThr causes structural and functional susceptibility to local mutations, Yong Wang, Qi-Yu Zeng, Wen-Qiang Zheng, Quan-Quan Ji, Xiao-Long Zhou*, En-Duo Wang*, Nucleic Acids Res., 2018, 46(9), 4662-4676. 3. A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities, Yun Chen, Zhi-Rong Ruan, Yong Wang, Qian Huang, Mei-Qin Xue, Xiao-Long Zhou , En-Duo Wang*, Nucleic Acids Res., 2018, 46,(7), 3643–3656. 4. Acetylation of lysine ε-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli, Qing Ye, Quan-Quan Ji, Wei Yan, Fang Yang, En-Duo Wang*, J. Biol. Chem., 2017, 292 (25),10709-10722. 5. Structural basis for substrate binding and catalytic mechanism of a human RNA: m5C methyltransferase NSun6, Ru-Juan Liu, Tao Long, Jing Li, Hao Li, En-Duo Wang*, Nucleic Acids Res., 2017,45(11), 6684–6697. 6. Self-protective responses to norvaline-induced stress in a leucyl-tRNA synthetase editing-deficient yeast strain, Quan-Quan Ji, Zhi-Peng Fang, Qing Ye, Cheng-Wu Chi, En-Duo Wang*, Nucleic Acids Res., 2017,45(12), 7367-7381. 7. Translational quality control by bacterial threonyl-tRNA synthetases, Xiao-Long Zhou, Yong Wang, Ru-Juan Liu, Mei-Qin Xue, En-Duo Wang*, J. Biol. Chem., 2016, 291(40), 21208-21221. 8. A human disease-causing point mutation in mitochondrial threonyl-tRNA synthetase induces both structural andfunctional defects, Yong Wang, Xiao-Long Zhou, Zhi-Rong Ruan, Ru-Juan Liu, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem., 2016, 291(12), 6507-6520. 9. C-terminal domain of leucyl-tRNA synthetase from pathogenic Candida albicans recognizes both tRNASer and tRNALeu, Quan-Quan Ji, Zhi-Peng Fang, Qing Ye, Zhi-Rong Ruan, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2016, 291 (7) , 3613-3625. 10. A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia, Ying Yang, Wei Liu, Zhi-Peng Fang, Juan Shi,, Feng-Yu Che,, Chun-Xia He,, Li-Bo Yao, En-Duo Wang*, Yuan-Ming Wu*, Human Mutation, 2016, 37 (2),165-169. 11. Identification of lethal mutations in yeast threonyl-tRNA synthetase which reveals critical residues in its human homolog, Zhi-Rong Ruan, Zhi-Peng Fang, Qing Ye, Hui-Yan Lei, Gilbert Eriani, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2015, 290(3), 1664-78. 12. Modulation of aminoacylation and editing properties of leucyl-tRNA synthetase by a conserved structural module, Wei Yan, Qing Ye, Min Tan, Xin Chen, Gilbert Eriani , En-Duo Wang*, J. Biol. Chem., 2015,290(19), 12256-67. 13. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase, Mi Zhou, Tao Long , Zhi-Peng Fang, Xiao-Long Zhou, Ru-Juan Liu , En-Duo Wang*, RNA Biol., 2015,12(8), 900-11. 14. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily, Ru-Juan Liu, Tao Long, Mi Zhou, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res.,2015, 43(15), 7489-503. 15. Degenerate CP1 domain From Human Mitochondrial Leucyl-tRNA Synthetase, Qing Ye, Meng Wang, Zhi-Peng Fang, Zhi-Rong Ruan, Quan-Quan Ji, Xiao-Long Zhou, En-Duo Wang*, J. Biol. Chem., 2015, 290(40),24391-402. 16. Calpain cleaves most components in the multiple aminoacyl-tRNA synthetase complex and affects their functions, Hui-Yan Lei, Xiao-Long Zhou, Zhi-Rong Ruan, Wei-Chen Sun , Gilbert Eriani,En-Duo Wang*, J. Biol. Chem., 2015, 290(43),26314-27. 17. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity., Qian Huang, Xiao-Long Zhou, Zhi-Peng Fang, Lei HY, Qing-Hua Hu, Peng Yao, En-Duo Wang*, RNA, 2015,20, 1440-50. 18. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Lan-Tao Gou, Peng Dai, Jian-Hua Yang, Yuanchao Xue, Yun-Ping Hu, Yu Zhou, Jun-Yan Kang, Xin Wang,Hairi Li, Min-Min Hua, Shuang Zhao, Si-Da Hu, Li-Gang Wu, Hui-Juan Shi, Yong Li, Xiang-Dong Fu, Liang-Hu Qu, En-Duo Wang*, Mo-Fang Liu*, Cell Res., 2015,25(2), 266. 19. Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNALeu in the archaeal mode, Zhi-Peng Fang, Meng Wang, Zhi-Rong Ruan, Min Tan, Ru-Juan Liu, Mi Zhou, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res., 2014, 42(8), 5109–24. 20. The mRNA of Human Cytoplasmic Arginyl-tRNA Synthetase Recruits Prokaryotic Ribosomes Independently, Fang Yang, Quan-Quan Ji, Liang-Liang Ruan, Qing Ye, En-Duo Wang*, J. Biol. Chem., 2014,289(30), 20953-59. 21. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading, Xiao-Long Zhou, Zhi-Rong Ruan, Meng Wang, Zhi-Peng Fang, Yong Wang, Yun Chen, Ru-Juan Liu, Gilbert Eriani, En-Duo Wang* ,Nucleic Acids Res.,2014, 42(22), 13873-86. 22. Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity, Xiao-Long Zhou, Zhi-Peng Fang, Zhi-Rong Ruan, Meng Wang, Ru-Juan Liu, Min Tan, Anella FM, En-Duo Wang*, Nucleic Acids Res., 2014,41(21) 9825-38. 23. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Qing-Hua Hu, Ru-Juan Liu, Zhi-Peng Fang, Jiong Zhang , Ying-Ying Ding , Min Tan, Meng Wang, Wei Pan , Hu-Chen Zhou , En-Duo Wang*, Scientific Report,2013, 3,2475. 24. Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote, Xiao-Long Zhou, Zhi-Rong Ruan, Qian Huang, Min Tan, En-Duo Wang* , Nucleic Acids Res., 2013, 41(1), 302-14. 25. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing, Qing-Hua Hu, Qian Huang, En-Duo Wang* , Nucleic Acids Res., 2013,41(3), 1859-72. 26. Leucine-Specific Domain (LSD) Modulates the Aminoacylation and Proofreading Functional Cycle of Bacterial Leucyl-tRNA Synthetase, Wei Yan, Min Tan, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2013,41(9), 4988–98. 27. The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation, Min Tan, Meng Wang, Xiao-Long Zhou, Wei Yan, Gilbert Eriani, En-Duo Wang* , Nucleic Acids Res.,2013,41(10), 5513–23. 28. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase,TrmL. Ru-Juan Liu, Mi Zhou, Zhi-Peng Fang, Meng Wang, Xiao-Long Zhou, En-Duo Wang*, Nucleic Acids Res., 2013,41(16),7828-42. 29. Inter-domain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase, Min Tan,Bin Zhu, Ru-Juan Liu, Xin Chen, Xiao-Long Zhou, En-Duo Wang*, Biochem. J., 2013, 449,123-31. 30. Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Liang-Liang Ruan, Xiao-Long Zhou, Min Tan, En-Duo Wang*, Biochem. J., 2013,450, 243-52. 31. Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations, Meng Wang, Xiao-Long Zhou, Ru-Juan Liu,Zhi-Peng Fang, Mi Zhou, Gilbert Eriani, En-Duo Wang* , Biochem. J., 2013, 453(3), 455-65. 32. piRNA-Triggered MIWI Ubiquitination and Removal by APC/C in Late Spermatogenesis, Shuang Zhao, Lan-Tao Gou, Man Zhang, Li-Dong Zu, Min-Min Hua,Ye Hua,Hui-Juan Shi,Yong Li,Jinsong Li,Dangsheng Li, En-Duo Wang*, Mo-Fang Liu* , Dev. Cell, 2013, 24(1),13-25. 33. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain, Qian Huang, Peng Yao, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2012, 40, 10463-77. 34. A naturally occurring nonapeptide functionally compensates the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity, Min Tan, Wei Yan, Ru-Juan Liu, Meng Wang, Xin Chen, Xiao-Long Zhou and En-Duo Wang*, Biochem. J. 2011, 443,477-84. 35. Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase, Xin Chen, Jing-Jing Ma, Min Tan, Peng Yao, Qing-Hua Hu, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Res., 2011,39(1), 235–47. 36. Role of tRNA amino acid-accepting end in aminoacylation and its quality control, Xiao-Long Zhou, Dao-Hai Du, Min Tan, Hui-Yan Lei, Liang-Liang Ruan, Gilbert Eriani, En-Duo Wang, Nucleic Acids Res., 2011, 39, 8857-68. 37. Peripheral insertion modulates editing activity of the isolated CP1 domain of leucyl-tRNA synthetase, Ru-Juan Liu, Min Tan, Dao-Hai Du, Gilbert Eriani, En-Duo Wang*, Biochem. J., 2011, 440(2), 217-27. 38. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases, Xiao-Long Zhou, Meng Wang, Min Tan, Qian Huang, Gilbert Eriani, and En-Duo Wang, Biochem. J. , 2010, 429, 505-13 . 39. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690. Xiao-Long Zhou, Min Tan, Meng Wang, Xin Chen, and En-Duo Wang*, Biochem. J. , 2010, 430(2), 325-33. 40. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase, Min Tan, Bin Zhu, Xiao-Long Zhou, Ran He, Xin Chen, Gilbert Eriani and En-Duo Wang, J. Biol. Chem. , 2010, 285(5), 3235-44. 41. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases, Xiao-Long Zhou, Meng Wang, Min Tan, Qian Huang, Gilbert Eriani, and En-Duo Wang*, Biochem. J. , 2010, 429, 505-13. 42. MicroRNA-155 functions as an oncomiR in breast cancer by targeting the suppressor of cytokine signaling-1 gene. Shuai Jiang, Hong-Wei Zhang, Ming-Hua Lu, Xiao-Hong He, Yong Li, Hua Gu, Mo-Fang Liu, En-Duo Wang*, Cancer Res., 2010, 70(8), 3119-27. 43. tRNA-independent pre-transfer editing by class I leucyl-tRNA synthetase, Bin Zhu, Peng Yao, Min Tan, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem. , 2009, 284,3418-24. 44. Two Non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity,Ran He, Li-Dong Zu, Peng Yao, Xin Chen , En-Duo Wang*, BBA-Protein and Proteomics, 2009, 1794, 347–54. 45. Leucyl-tRNA synthetase from the early diverging eukaryote Giardia lamblia, Xiao-Long Zhou, Peng Yao, Liang-Liang Ruan, Bin Zhu, Jun Luo, Liang-Hu Qu , En-Duo Wang*, Biochemistry (US), 2009, 48, 1340–47. 46. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing, Xiao-Long Zhou, En-Duo Wang*, Biochem. Biophys. Res. Commun, 2009, 386, 510-15. 47. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing, Xiao-Long Zhou, Bin Zhu, En-Duo Wang*, J. Biol. Chem., 2008, 283, 36608-16. 48. Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain,Peng Yao, Xiao-Long Zhou, Ran He, Mei-Qin Xue, Yong-Gang Zheng, Yue-Fei Wang, En-Duo Wang*, J. Biol. Chem., 2008,283, 22591-600. 49. Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps, Peng Yao, Bin Zhu, Sophie Jaeger, Gilbert Eriani , En-Duo Wang*, Nucleic Acids Res., 2008, 36(8), 2728-38. 50. A present-day aminoacyl-tRNA synthetase with ancestral editing properties, Bin Zhu, Ming-Wei Zhao, Gilbert Eriani and En-Duo Wang,RNA, 2007, 13,15-20. 51. The split leucine-specific domain of leucyl-tRNA synthetase from Aquifex aeolicus,Jing-Jing Ma, Ming-Wei Zhao, En-Duo Wang*, Biochemistry (US), 2006, 45, 14809-16. 52. Two forms of human cytoplasmic arginyl-tRNA synthetase produced from two translation initiations by a single mRNA, Yong-Gang Zheng, Hui Wei, Chen Ling, Min-Gang Xu, En-Duo Wang*, Biochemistry (US), 2006, 45, 1338-44. 53. Leucyl-tRNA synthetase editing site of the ancestral bacteria Aquifex aeolicus contains relics of synthetase evolution, Ming-Wei Zhao, Bin Zhu, Rui Hao, Min-Gang Xu, Gilbert Eriani, En-Duo Wang, EMBO J. 2005, 24, 1430–39. 54. A T-stem slip in human mitochondrial tRNALeu(CUN) regulates its charging capacity, Rui Hao, Ming-Wei Zhao, Zhan-Xi Hao, Yong-Neng Yao, En-Duo Wang*, Nucleic Acids Res.,2005, 33(11), 3606–13. 55. The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex, Chen Ling, Yong-Neng Yao, Yong-Gang Zheng, Hui Wei, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, J. Biol. Chem. , 2005, 280(41), 34755-63. 56. Two distinct domains of the b subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection, Yong-Gang Zheng, Hui Wei, Chen Ling, Franck Martin, Gilbert Eriani, En-Duo Wang*, Nucleic Acids Research, 2004, 32, 3294-303. 57. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices, Min-Gang Xu, Ming-Wei Zhao, En-Duo Wang, J. Biol. Chem., 2004, 279, 32151-58. 58. Reduction of mitochondrial tRNALeu(UUR) aminoacylation by some MELAS -associated mutations, Rui Hao, Yong-Neng Yao, Yong-Gang Zheng, Min-Gang Xu, En-Duo Wang*, FEBS Lett. , 2004, 578(1-2), 135-9. 59. Escherichia coli tRNA4Arg(UCU) induces a constrained conformation of the crucial Ω-loop of arginyl-tRNA synthetase, Yong-Neng Yao, Qing-Shuo Zhang, Xian-Zhong Yan, Guang Zhu, En-Duo Wang*, Biochem. Biophys. Res. Commun., 2004, 313(1), 129-34. 60. Influence of 252T mutations of Escherichia coli leucyl-tRNA synthetase on discrimination of amino acids and cell viability, Min-Gang Xu, Juan Li, Xing Du, En-Duo Wang*, Biochem Biophys Res Commun. 2004, 318(1), 11-6. 61. High-level expression and single-step purification of leucyl-tRNA synthetase from Aquifex aeolicus, Chen Ling, Yong-Gang Zheng, En-Duo Wang*, Protein Expression and Purification, 2004, 36, 146-9. 62. Tertiary-structure base pairs between D- and TyC- loops of Escherichia coli tRNALeu play important roles in both aminoacylation and editing, Xing Du, En-Duo Wang*, Nucleic Acids Res., 2003, 31(11), 2865-72. 63. Arginyl-tRNA synthetase with signature sequence KMSK from Bacillus stearothermophilus, Juan Li, Yong-Neng Yao, Mo-Fang Liu, En-Duo Wang*, Biochem. J. , 2003, 376(3), 773-9. 64. Enzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases, Ming-Wei Zhao, Rui Hao, Jian-Feng Chen, Franck Martin, Gilbert Eriani, En-Duo Wang*, Biochemistry(US), 2003, 42(25),7694-700. 65. The processing of human mitochondrial leucyl-tRNA synthetase in the insect cells, Yong-Neng Yao, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, FEBS Lett. , 2003, 534(1-3), 139-42. 66. Substrate-induced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by 19F NMR spectroscopy, Yong-Neng Yao, Xian-Zhong Yan, Qing-Shuo Zhang, Guang Zhu, En-Duo Wang*, FEBS Lett. , 2003, 547(1-3), 197-200. 67. E292 is important for the aminoacylation activity of Escherichia coli leucyl-tRNA synthetase, Xing Du, En-Duo Wang*, Journal of Protein Chemistry, 2003, 22(1), 71-6. 68. Human mitochondrial leucyl-tRNA synthetase with high activity produced from Escherichia coli, Yong-Neng Yao, Lie Wang, Xiang-Fu Wu, En-Duo Wang*, Protein Expression and Purification, 2003, 30(1), 112-6. 69. An insertion mutant of LeuRS with 116 amino acid residues has full activity, Huang Ying, Ling Chen, Li Tong, Tong Geng-Lei, Wang En-Duo, Acta Biochimica et Biophysica Sinica, 2003, 35(3), 225-9. 70. 64. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacterium Aquifex aeolicus, Min-Gang Xu, Jian-Feng Chen, Franck Martin, Ming-Wei Zhao, Gilbert Eriani, En-Duo Wang*, J. Biol. Chem., 2002, 277 (44), 41590-96. 71. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli, Liu Wen, Liu Mo-Fang, Xia Xia, Wang En-Duo*, Ying-Lai Wang, Acta Biochimica et Biophysica Sinica, 2002,34(2),131-7. 72. Discrimination of tRNALeu isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing, Xing Du, En-Duo Wang*, Biochemistry, 2002, 41, 10623-28. 73. A negative element located in the upstream flanking region of the gene encoding arginyl-tRNA synthetase (argS) from Escherichia coli, Liu Mo-Fang, Xu Min-Gang, Xia Xian, Wang En-Duo*, Ying-Lai Wang, Acta Biochimica et Biophysica Sinica, 2001, 33(6), 494-8. 74. The Effect of alanine-293 replacement on the activity, ATP-binding, and editing of Escherichia coli leucyl-tRNA synthetase, Jian-Feng Chen, Tong Li, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 2001, 40(5), 1144-1149. 75. Two novel engineered bacteria for secretory expression of glutaryl 7-amino cephalosporanic acid acylase, Yong-Gang Zheng, Yong Li, Jian-Feng Chen, Wei-Hong Jiang, Guo-Ping Zhao, En-Duo Wang*, Biotechnology Letters, 2001, 23(21), 1781-7. 76. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function, Jian-Feng Chen, Ni-Ni Guo, Tong Li, En-Duo Wang and Ying-Lai Wang, Biochemistry (US),2000,39(22),6726-31. 77. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for aminoacylation activity, Tong Li, Nini Guo, Xian Xia, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(40), 13063-9. 78. A single base substitute in the variable pocket of yeast tRNAArg eliminates species-specific aminoacylation, Wen Liu, Yi-Wei Huang, Gilbert Eriani, Jean Gangloff, En-Duo Wang*, Ying-Lai Wang, Biochimica et Biophysica Acta (Netherlands), 1999, 1473, 2-3, 356-62. 79. Discrimination of tRNALeu isoacceptors by insertion mutant of Escherichia coli leucyl-tRNA synthetase, Tong Li, Yong Li, Ni-Ni Guo, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(28), 9084-8. 80. Effect of the cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli, Mo-Fang Liu, Yi-Wei Huang, Jin-fu Wu, En-Duo Wang*, Ying-Lai Wang, Biochemistry (US), 1999, 38(34), 11006-11. 81. High-level expression and single-step purification of leucyl-tRNA synthetase, Jian-Feng Chen, En-Duo Wang*, Ying-Lai Wang, Protein Expression and Purification, 1999, 15(1), 115-20. 82. A modified procedure for fast purification of T7 RNA polymerase, Yong Li, En-Duo Wang*, Ying-Lai Wang, Protein Expression and Purification, 1999, 16(2), 355-8. 83. Biosynthesis and characterization of 4-flurotryptophan-labeled Escherichia coli arginyl-tRNA synthetase, Qing-Shuo Zhang, Li Shen, En-Duo Wang, Ying-Lai Wang, J. Biol. Chem., 1999,18(2), 187-92. 84. T7 RNA polymerase transcription of Escherichia coli isoacceptors tRNALeu, Li Yong, Chen Jian-Feng, Wang En-Duo *, Wang Ying-Lai, Science in China (series C), 1999, 42(2), 185-90. 85. Post-translational processing and subunits reconstitution in vivo of cephalosporin acylase from pseudomonas sp130, Yong Li, Jian-Feng Chen, Wei-Hong Jiang, Xiang Mao, Guo-Ping Zhao, En-Duo Wang*, European Journal of Biochemistry, 1999, 262(3), 713-719. 86. The role of tryptophan residues in E. coli arginyl-tRNA synthetase, Qing-Shuo Zhang, En-Duo Wang, Ying-Lai Wang, Biochemica et Biophysica Acta, 1998, 1387, 136-142. 87. Overproduction and purification of Escherichia coli tRNALeu, Li Yong, Wang En-Duo* and Wang Yinglai, Science in China (series C), 1998, 41(3), 225-31. 88. Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase, Yong Li, Wei-Hong Jiang, Yun-Liu Yang, Guo-Ping Zhao, En-Duo Wang*, Protein Expression and Purification, 1998, 12,233-8.

学术兼职

《生命科学》主编,2012.01-今 《中国科学》编委会委员,2007年-至今 《生物化学与生物物理学报》编委会委员,2003-至今 《中国生物化学杂志》编委会委员,2010-至今 美国《J. Biol. Chem.》编委会委员,2011-2016 中国科学院上海生科院生化与细胞所学术委员会副主任,2012-今 细胞分化与凋亡教育部重点实验室学术委员会主任, 2011-2016 基因工程教育部重点实验室学术委员会主任, 2011-2016 上海市女科学家联谊会名誉理事长,2014-至今 中国科学院上海交叉学科研究中心副理事长,2009-至今 中国科学院,院士,2005年-至今 第三世界科学院(TWAS),院士,2006年-至今

推荐链接
down
wechat
bug