个人简介
洪义浙江大学建筑工程学院副教授,博士生导师。2012年获香港科技大学岩土工程专业博士学位,主要研究方向为海洋土力学、海洋岩土工程和滨海城市地下空间开发。主持国家自然科学基金项目3项(青年、面上、重点项目子课题)、浙江自然科学基金重点项目1项、浙江自然科学基金重点项目1项、浙江省重点研发项目课题1项、工信部高技术船舶项目子课题1项、中国博士后科学基金面上(一等)1项,主持重大工程项目6项。
研究成果在《Géotechnique》《Journal of Geotechnical and Geoenviromental Engineering,ASCE》、《Canadian Geotechnical Journal》、《Journal of Engineering Mechanics,ASCE》、《岩石力学与工程学报》、《岩土工程学报》等国内外权威学术期刊上发表论文70篇,其中SCI收录53篇(含第一/通讯35篇)。研究成果被44个国家和地区学者(含20名国内外院士)引用852次,ESI高被引论文2篇。主编/参编英文专著各1部(分别由Springer和Elsevier出版),授权发明专利13件,登记软件著作权8件。
研究成果应用于滨海地铁、新能源等行业的多项重大工程的工后微沉降控制,包括全球首个建造于含气软土地基上的超临界千吨重载石化基地(舟山绿色国际石化基地),我国首个含浅层气软弱地基国际支线机场(萧山)下穿隧道工程。获浙江省科技进步奖2项(排名分列4/13和7/15)
作为组委会共同主席/大会秘书长组织国内外会议4次,作国际大会主题或特邀报告7次。
入选浙江省“钱江人才”计划(2016)。获国际土力学及岩土工程学会(ISSMGE)四年一届杰出岩土工程青年奖(2017),是首位获奖华人青年。获浙江大学青年教师教学竞赛一等奖。入选浙江大学“优秀班主任”、“优秀德育导师”,建工学院“我最喜爱的老师”等。
研究兴趣
[1]海洋土力学
[2]海洋岩土工程
[3]滨海城市地下空间开发
教学工作
[1]《土力学》(本科)
[2]《基础工程》(本科)
[3]《工程弹塑性力学》(研究生)
[4]《Critical State Soil Mechanics》(博士生.全英文)
基础项目
[1]国家自然科学基金面上项目(No.51779221)含气粘土循环弱化宏细观机制及其海洋桩基循环特性影响2018.01-2021.12
[2]国家自然科学基金青年项目(No.51408540)超深基坑承压水突涌破坏演化机理及控制2015.01-2017.12
[3]浙江省自然科学基金面上项目(No.Y17E090016)富含生物气软黏土海床中吸力锚沉贯与循环抗拔承载失效机理研究2017.01-2019.12
[4]“钱江人才”计划(No.QJD1602028)考虑“桩径效应”的海上风机单桩基础变形及承载特性研究2017.01-2020.01
[5]中央高校基本科研业务费专项资金(No.2016QN4022)极端循环荷载作用下软弱海床风机基础灾变机理2016.03-2018.03
[6]中国博士后基金面上项目(一等)(No.2013M540494)承压水基坑塑性破坏机理研究2008.01-2014.01
[7]国家自然科学基金重点项目(No.51939010)含浅层气地层中重大基础设施灾变防控关键技术与示范2018.1-2021.12
[8]浙江省重点研发计划(No.2018C03031)含浅层气地层中重大基础设施灾变防控关键技术与示范2018.1-2021.12
[9]国家重点研发计划(No.2018YFE0109500)极端环境荷载下风电结构灾变机制及防灾对策2019-2022
[10]国家重点研发计划(No.2016YFC0800204)暴雨作用下城市重大基础设施渗流突变失效机制及控制技术2017.01-2021.12
[11]省基金-华东院联合基金含浅层气粉砂动力弱化特性及强潮下近海含气海床滑坡成灾机制研究2020.01-2023.12
工程研究
[1]含浅层气海床土原位表征理论及与海洋桩基静动力相互作用机制研究2020.03-2021.06中国电建集团华东勘测设计研究院有限公司
[2]杭州1号线三期工程SG1-3-3标盾构隧道穿越机场下方含浅层气地层致灾机理及关键控制技术2019.07-2020.05中铁二局集团有限公司
[3]精准原位测试方法和参数研究2018.10-2019.09中国电建集团华东勘测设计研究院有限公司
[4]基于大型物理模型试验的近海滑坡形成机制和评价体系2019.03-2020.12中国电建集团华东勘测设计研究院有限公司
学术专著
[1]Y.Hong and L.Z.Wang.Deformation and failure mechanism of excavation in clay.Hydraulic uplift.Springer.,ISBN 978-3-662-46506-6,248 p.(共29万字,本人撰写20万字)
[2]Subhamoy Bhattacharya,L.Z.Wang,J.W.Liu,Y.Hong.Wind Energy:A hand book for onshore and offshore turbines,ISBN 978-0-12-809451-8[Elsevier]Chapter 13 Civil Engineering challenges associated with design of Offshore Wind Turbines with special reference to China.
专利及著作权
[1]吴宏伟,洪义,用于土工离心机中模拟高速公路建造的装置及方法,ZL201410745332.2,授权日期:2017.01.12
[2]洪义,王立忠,王欢,国振,一种应用于同时测量软黏土刚度和强度的触探器ZL201510022089.6,授权日期:2017.04.13
[3]洪义,王立忠,杨斌,一种海底含气软黏土的制作装置,ZL201620870857.3,授权日期:2016.12.29(实用新型)
[4]严佳佳,董梅,洪义,傅了一,王宝峰,室内空心圆柱重塑粘土试样压缩制备装置及其方法,ZL201610161290.7,授权日期:2018.06.19
[5]刘亚竞,王立忠,洪义,上海隧道工程有限公司,同时计算深基坑变形和抗隆起稳定性的软件V1.0,2017SR600666,授权日期:2017.11.02
[6]洪义,王立忠,杨斌,孙梵,用于原位测量海底含气土中气体含量的装置及其测量方法,ZL201610455222.1,授权日期:2018.09.04
[7]国振,芮圣洁,洪义,王立忠,周文杰,一种用于漂浮式水上光伏系泊的自动收敛装置,ZL201710937052.5,授权日期:2019.2.22
[8]洪义,王立忠,孙梵,杨仲轩,一种测量任意围压作用下软黏土断裂韧度的装置及方法,ZL 201610657916.3,授权日期:2019.02.12
[9]洪义,郑艺豪,邹诗环,杨日交,王立忠,一种模拟斜坡海床浅层气喷发灾变对既有海洋基础影响的装置,ZL201820970578.3,授权日期:2019.02.22(实用新型)
[10]洪义,杨斌,王立忠,一种海底含气软粘土的制作方法及装置,ZL201610654781.5,授权日期:2019.06.14
[11]洪义,赖踊卿,王立忠,李玲玲,一种模拟巨浪下含浅层气海床气力突涌及海床失稳的装置,ZL201711029374.6,授权日期:2019.06.28
[12]国振,黄玉佩,洪义,王立忠,一种复合的桥墩防撞系统,ZL201610842201.5,授权日期:2019.08.02
[13]洪义,王立忠,张剑锋,用于计算含浅层气地层变形和强度的本构模拟软件V1.0,2019SR0789830,授权日期:2019.04.30
[14]洪义,王立忠,赵爽,朱连根,王强,毛奇辉,一种自适应放气杆及浅层气有控放气回收系统及方法,ZL201910739813.5,授权日期:2020.07.10
[15]洪义,王立忠,郑威威,宽带饱和度软土海床静力触探弹塑性响应计算软件V1.0,2020SR1237652,授权日期:2020.10.21
[16]赖踊卿,王立忠,洪义,基于水平受荷桩桩身实测弯矩分布得到不同深度p-y曲线的计算软件V1.0,2020SR1035242,授权日期:2020.09.03
[17]赖踊卿,王立忠,洪义,基于水平受荷桩桩身实测弯矩分布得到不同深度p-y曲线的计算软件V1.0,2020SR1036618,授权日期:2020.09.03
[18]王立忠,赖踊卿,洪义,浙江省能源集团有限公司,考虑桩径效应的软土海床水平受荷单桩基础设计软件,2020SR1036610,授权日期:2020.09.03
主要奖励和荣誉
[1]国际土力学与岩土工程学会(ISSMGE)四年一届的“杰出岩土工程青年奖”(ISSMGE Outstanding Young Geotechnical Engineer Award)
[2]2017年获浙江省科技进步二等奖(7/13)
[3]2019年获浙江省科技进步三等奖(4/7)
[4]浙江大学青年教师教学竞赛一等奖(2020)
[5]浙江大学“优秀班主任”(2020)
[6]浙江大学“优秀德育导师”(2018)
[7]浙江大学建筑工程学院“我最喜爱的老师”(2016)
[8]2017年大型仪器共享服务优秀机组
生态岩土工程
生态岩土学(Eco-geotechnics)是一门新兴的跨专业学科,它综合了土力学、岩石力学、土壤学、生态学、植物学和大气科学等学科的知识,研究生物相关有机质(如植物、真菌、细菌等)与岩土体等无机材料之间的相互作用及其作用机理。生态岩土工程(Eco-geotechnical Engineering/Soil Bioengineering)采用生态岩土学的理论、技术与方法,促进生物相关有机质与岩土体(工程)的互利共存,既能改善生态系统和景观,又能满足工程安全和服役性能的要求,实现生态效益和工程建设协调发展。生态岩土学的建立符合国家“十三五”期间提出的加强“蓝绿”布局的思想,与国家发展战略和区域经济社会发展需求高度契合,有利于实现绿色发展、循环发展和碳中和发展的目标。
目前在生态岩土工程(Eco-geotechnical Engineering/Soil Bioengineering)领域研究的知名学者包括英国皇家工程院院士、香港科技大学吴宏伟(Charles W.W.Ng)教授,英国皇家工程院院士、英国南安普顿大学William Powrie教授,澳大利亚技术科学与工程院院士、澳大利亚悉尼科技大学Buddhima Indraratna教授,英国皇家工程院院士、瑞士苏黎世联邦理工学院Sarah M.Springman教授等。其中吴宏伟教授2017年以《大气–植被–土体相互作用:理论与机理》为题主讲了黄文熙讲座;编写了全球首部生态岩土工程专著《Plant-soil Slope Interaction》,被Taylor&Francis评为年度工程类杰出专著前3名。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
主要学术论文
[1]Hong Y.;Wang X.T.;Wang L.Z,*;Gao Z.W.;A state-dependent constitutive model for coarse-grained gassy soil and its application in slope instability modelling,Computers and Geotechnics,2021,129(103847).
[2]Hong Y.;Chen X.Y.;Wang L.Z.*;Yang B.;Sanchez M.;Distinct undrained cyclic behavior of fine-grained gassy soil at various initial pore water pressures,Journal of Geotechnical and Geoenvironmental Engineering-ASCE,2021,147(2).
[3]Hong Y.;Wang L.Z.*;Zhang J.F.;Gao Z.W.;3D elastoplastic model for fine-grained gassy soil considering the gas-dependent yield surface shape and stress-dilatancy,Journal of Engineering Mechanics-ASCE,2020,146(5).
[4]Hong Y.;Zhang J.F.;Wang L.Z.*;Liu T.;On evolving size and shape of gas bubble in marine clay under multi-stage loadings:microcomputed tomography(μCT)characterization and cavity contraction analysis,Canadian Geotechnical Journal,2020,57(7).
[5]Hong Y.;Wang L.Z.*;Yang B.;Zhang J.F.;Stress-dilatancy behaviour of bubbled fine-grained sediments,Engineering Geology,2019,260:0-105196.
[6]Hong Y.;He B.;Wang L.Z,*;Ng C.W.W.;Masin D.;Cyclic lateral response and failure mechanisms of a semi-rigid pile in soft clay:centrifuge tests and numerical modelling,Canadian Geotechnical Journal,2017,54(6):806-824.
[7]Hong Y.;Wang L.Z.*;Ng C.W.W.;Yang B.;Effect of initial pore pressure on undrained shear behaviour of gassy marine clay,Canadian Geotechnical Journal,2017,54:1592-1600.
[8]Hong Y.;Koo R.C.;Zhou C.*;Ng C.W.W.;Wang L.Z.;Small strain path-dependent stiffness of Toyoura sand:laboratory measurement and numerical implementation,International Journal of Geomechanics,2017,17(1):04016036.
[9]Hong Y.;Ng C.W.W.;Chen Y.M.;Wang L.Z.*;Chan V.;Field study of downdrag and dragload of bored piles in consolidating ground,Journal of Performance of Constructed Facilities-ASCE,2016,30(3):04015050.
[10]Hong Y.;M.A.Soomro;C.W.W.Ng*;Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling,Canadian Geotechnical Journal,2015,64:105-119.
[11]Hong Y.;C.W.W.Ng;L.Z.Wang*;Initiation and failure mechanism of base instability of excavations in clay triggered by hydraulic uplift,Canadian Geotechnical Journal,2015,52(5):599-608.
[12]Hong Y.;Soomro M.A.;Ng C.W.W.;Wang L.Z.*;Yan J.J.;Li B.;Tunnelling under pile groups and rafts:numerical parametric study on tension effects,Computers and Geotechnics,2015,68:54-65.
[13]Hong Y.;Ng C.W.W.;Liu G.B.;Liu T.*;Three-dimensional deformation behaviour of a multi-propped excavation at a'greenfield'site at Shanghai soft clay,Tunnelling and underground space technology,2015,45:249-259.
[14]Hong Y.;Wang J.P.;Li D.Q.;Cao Z.J.*;Ng C.W.W.;Cui P.;Statistical and probabilistic analyses of impact pressure and discharge of debris flow from 139 events during 1961 and 2000 at Jiangjia Ravine,China,Engineering Geology,2015,187:122-134.
[15]Hong Y.*;Ng C.W.W.;Base stability of multi-propped excavations in soft clay subjected to hydraulic uplift,Canadian Geotechnical Journal,2013,50(2):153-164.
[16]Fang J.;Wang L.Z.;Hong Y.*;Zhao J.D.;Influence of solid-fluid interaction on impact dynamics against rigid barrier:CFD-DEM modelling,Géotechnique,2021.
[17]Gao Zhiwei;Hong Y.*;Wang Lizhong;Constitutive modelling of fine-grained gassy soil:A composite approach,International Journal for Numerical and Analytical Methods in Geomechanics-ASCE,2020,44(9).
[18]Lai Y.Q.;Wang L.Z.;Hong Y.*;He B.;Centrifuge modeling of the cyclic lateral behavior of large-diameter monopiles in soft clay:Effects of episodic cycling and reconsolidation,Ocean Engineering,2020,200:0-107048.
[19]Wang,H.;Wang,L.Z.;Hong Y.*;He,B.;Zhu,R.H.;Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand,Applied Ocean Research,2020,101:0-102196.
[20]Liu Y.J.;Wang L.Z.;Hong Y.*;Zhao J.D.;Yin Z.Y.;A coupled CFD-DEM investigation of suffusion of gap graded soil:Coupling effect of confining pressure and fines content,International Journal for Numerical and Analytical Methods in Geomechanics-ASCE,2020,44(18):2473-2500.
[21]Wang K.J.;Wang L.Z.;Hong Y.*;Modelling thermo-elastic–viscoplastic behaviour of marine clay,Acta Geotechnica,2020,15(9):2415-2431.
[22]Wang L.Z.;Lai Y.Q.;Hong Y.*;Masin D.;A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter(L/D)ratios,Ocean Engineering,2020,212:0-107492.
[23]He B.;Lai Y.Q.;Wang L.Z,;Hong Y.*;Zhu R.H.;Scour effects on thelateral behavior of a large-diameter monopile in soft clay:Role of stress history,Journal of Marine Science and Engineering,2019,7(6):0-170.
[24]Wang L.Z.;Liu Y.J.;Hong Y.*;Liu S.M.;Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design(MMSD)method,Computers and Geotechnics,2018,104:54-68.
[25]Wang L.Z.;Wang H.;Zhu B.;Hong Y.*;Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand,Ocean Engineering,2018,155:88-105.
[26]He B.;Wang L.Z.;Hong Y.*;Field testing of one-way and two-way cyclic lateral responses of single and jet-grouting reinforced piles in soft clay,Acta Geotechnica,2017,12(5):1021-1034.
[27]Wang L.Z.;Wang K.J.;Hong Y.*;Modeling temperature-dependent behavior of soft clay,Journal of Engineering Mechanics-ASCE,2016,142(8):1-13.
[28]He B.;Wang L.Z.;Hong Y.*;Capacity and failure mechanism of laterally loaded jet-grouting reinforced piles:Field and numerical investigation,Science in China-Series E:Technological Sciences,2016,59(5):763-776.
[30]Li B.;Hong Y.*;Gao B.;Qi T.Y.;Wang Z.Z.;Zhou J.M.;Numerical parametric study on stability and deformation of tunnel face reinforced with face bolts,Tunnelling and Underground Space Technology,2015,47:73-80.
[31]Soomro M.A.;Hong Y.*;Ng C.W.W.;Lu H.;Peng S.Y.;Load transfer mechanism in pile group due to single tunnel advancement in stiff clay,Tunnelling and Underground Space Technology,2015,45:63-72.
[32]Wang L.Z.;Chen K.X.;Hong Y.*;Ng C.W.W.;Effect of consolidation on responses of a single pile subjected to lateral soil movement,Canadian Geotechnical Journal,2015,52(6):769-782.
[33]Ng C.W.W.;Hong Y.*;Soomro M.A.;Effects of piggyback twin tunnelling on a pile group:3D centrifuge tests and numerical modelling,Géotechnique,2015,65(1):38-51.
[34]Ng C.W.W.;Hong Y.*;Liu G.B.;Liu T.;Ground deformations and soil–structure interaction of a multi-propped excavation in Shanghai soft clays,Géotechnique,2012,62(10):907-921.
[35]Liu G.B.;Jiang J.;Ng C.W.W.;Hong Y.*;Deformation characteristics of a 38m deep excavation in soft clay,Canadian Geotechnical Journal,2011,48(12):1817-1828.
[36]Liu Y.J.;Yin Z.Y.*;Wang L.Z.;Hong Y.;A coupled CFD-DEM investigation of internal erosion considering suspension flow.,Canadian Geotechnical Journal,2021.
[37]Lai Y.Q.;Wang L.Z.;Zhang Y.H.*;Hong Y.;Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves,Ocean Engineering,2021,220:0-108437.
[38]Fu Y.K.;Gao Z.W.*;Hong Y.;Li T.L.;Garg A.;Destructuration of saturated natural loess:From experiments to constitutive modeling,International Journal of Damage Mechanics,2020,0(0):1-20.
[39]Huang F.;Wu C.*;Jang B.-A.;Hong Y.;Guo N.;Guo W.;Instability mechanism of shallow tunnel in soft rock subjected to surcharge loads,Tunnelling and Underground Space Technology,2020,99:0-103350.
[40]Guan Z.;Wang Y.*;Cao Z.J.;Hong Y.;Smart sampling strategy for investigating spatial distribution of subsurface shallow gas pressure in Hangzhou Bay area of China,Engineering Geology,2020,274:0-105711.
[41]Wang H.;Lehane B.M.;Bransby M.F.;Wang L.Z.*;Hong Y.;A simple approach for predicting the ultimate lateral capacity of a rigid pile in sand,Geotechnique Letters,2020,10(3):429-435.
[42]Wang W.D.*;Ng C.W.W.;Hong Y.;Hu Y.;Li Q.;Forensic study on the collapse of a high-rise building in Shanghai:3D centrifuge and numerical modelling,Géotechnique,2019,69(10):847-862.
[43]Zhang,Q.*;Li,Y.;Wu,C.;Fei,X.;Hong,Y.;Impacts of stress and roughness on steady-state creep of synthetic rock joints under shear,Geotechnique Letters,2019,9(1):46-52.
[44]Wu C.Z,;Chu J.*;Wu S.F.;Hong Y.;3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction,Engineering Geology,2019,249:23-30.
[45]Yu T.;Zhang M.;Kang D.;Zhao S.;Ding A.Q.;Lin Q.J.;Xu D.D.;Hong Y.;Wang L.Z.;Zheng P.*;Characteristics of Microbial Communities and Their Correlation With Environmental Substrates and Sediment Type in the Gas-Bearing Formation of Hangzhou Bay,China,Frontiers in Microbiology,2019,10:0-2421.
[46]Peng M.;Jiang Q.L.;Zhang Q.Z.*;Hong Y.;Jiang M.Z.;Shi Z.M.;Zhang L.M.;Stability analysis of landslide dams under surge action based on large-scale flume experiments,Engineering Geology,2019,259:0-105191.
[47]Wu C.Z.;Hong Y.;Chen Q.S.*;Karekal S.;A modified optimization algorithm for back analysis of properties for coupled stress-seepage field problems,Tunnelling and Underground Space Technology,2019,94.
[48]Kurugodu H.;Bordoloi S.;Hong Y.;Garg A.;Sreedeep S.;Gandomi A.*;Genetic programming for soil-fiber composite assessment,Advances in Engineering Software,2018,122:50-61.
[49]Wu C.Z.;Chen X.G.;Hong Y.;Xu R.Q.*;Yu D.H.;Experimental Investigation of the Tensile Behavior of Rock with Fully Grouted Bolts by the Direct Tensile Test,Rock Mechanics and Rock Engineering,2018,51(1):351-357.
[50]Liang R.Z.*;Xia T.D.;Hong Y.;Yu F.;Effects of above-crossing tunnelling on the existing shield tunnels,Tunnelling and Underground Space Technology,2016,58:159-176.
[51]Wang L.Z.;He B.;Hong Y.;Guo Z.;Li L.L.*;Field tests of the lateral monotonic and cyclic performance of jet-grouting reinforced cast-in-place piles,Journal of Geotechnical and Geo-environmental Engineering-ASCE,2015,141(5):06015001.
[52]Ng C.W.W.;Shi J.W.*;Hong Y.;Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel,Canadian Geotechnical Journal,2013,50(8):874-888.
[53]Zhang J.F.;Hong Y.;Wang L.Z.;Zhang Z.Z.;Distinct stress-dilatancy behaviour of fine-grained sediment containing large bio-gas bubbles,7th Asia-Pacific Conference on Unsaturated Soils,AP-UNSAT 2019,日本名古屋,2019-8-23至2019-8-25.
[54]Liu X.;Li D.Q.;Cao Z.J.;Hong Y.;Probabilistic analysis of ground deformation induced by excavation based on hypoplastic constitutive models,13th International Conference on Applications of Statistics and Probability in Civil Engineering,ICASP 2019,韩国首尔,2019-5-26至2019-5-30.
[55]Ng C.W.W.*;Hong Y.;Recent Novel In-flight Modelling Techniques for Centrifuge Modelling,The 2nd Asian Conference on Physical Modelling in Geotechnics(Keynote Lecture),Shanghai,2016-11-30至2016-12-02.
[56]Huang Y.;Quo Z.;Hong Y.;Tong J.;Tang L.;Wang L.;Investigations on dynamic reponses of offshore wind turbine supported by monopile in sand,12th ISOPE Pacific-Asia Offshore Mechanics Symposium,PACOMS 2016,澳大利亚黄金海岸,2016-10-4至2016-10-7.
[57]Ng C.W.W.*;Hong Y.;Centrifuge modelling in geotechnics:research,design and forensic study,Proceeding of Indian Geotechnical Conference(IGC-2012)(Keynote Lecture),New Delhi,2012-12-13至2012-12-15.
[58]Ng C.W.W.*;Hong Y.;Role of geotechnical centrifuge modelling in advancing research and engineering design(Keynote Lecture),21st biennial National Congress on Soil Mechanics and Geotechnical Engineering of the Argentinian Geotechnical Society,Rosario,Argentina,2012-09-12至2012-09-14.
[59]Hong Y.*;Ng C.W.W.;In-flight centrifuge modelling of multi-stage excavation in soft clay with an underlying aquifer,Proceedings of the 14th Asian Region Conference on Geotechnical Engineering,HongKong,2011-02-02至2011-02-04.
[60]王立忠;刘亚竞;龙凡;洪义*;软土地铁深基坑倒塌分析,岩土工程学报,2020,42(09):1603-1611.
[61]马元;刘亚竞;侯永茂;王立忠;洪义*;杭州狭长软土基坑支护侧移规律与解析预测方法研究,隧道建设(中英文),2019,39(11):1797-1805.
[62]汪轶群;洪义*;国振;王立忠;南海钙质砂宏细观破碎力学特性试验研究,岩土力学,2018,39(01):199-206 and 215.
[63]朱剑锋;洪义;严佳佳;龚晓南;赵弘毅*;波浪循环荷载作用下盾构穿越海堤过程中下卧软土的弱化响应研究,土木工程学报,2018,51(12):111-119+139.
[64]王宽君;洪义;王立忠;李玲玲;不排水升温条件下黏性土孔压响应,岩石力学与工程学报,2017,36(09):2288-2296.
[65]孙廉威;秦建设*;洪义;王立忠;赵长军;秦肖;地面堆载下盾构隧道管片与环缝接头的性状分析,浙江大学学报(工学版),2017,51(08):1509-1518.
[66]何奔;王欢;洪义;王立忠*;赵长军;秦肖;竖向荷载对黏土地基中单桩水平受荷性能的影响,浙江大学学报(工学版),2016,50(7):1221-1229.