当前位置: X-MOL首页全球导师 国内导师 › 黄铭枫

个人简介

男,博士,浙江诸暨人。浙江大学建筑工程学院教授,2011年入选浙江大学求是青年学者。1999年和2002年先后获得华中科技大学结构工程专业本科和硕士学位。硕士毕业后两年分别就职于阿特金斯顾问(ATKINS深圳)和深圳市建筑科学研究院,任职结构工程师。2008年获得香港科技大学结构工程博士学位。作为负责人主持了国家自然科学基金项目、2011年交通部重大科技专项子项目、中国博士后科学基金特别资助项目和浙江省科技计划课题等10余项研究项目。已发表国内外知名期刊论文80余篇,其中SCI收录论文40余篇。获得授权发明专利8项。出版英文专著2部。 发明专利(授权) [1]胡德军,黄铭枫,张柏岩,吴利泽,张永光,王帅.一种钢桁架液压提升全过程实时动态应力监测方法[P].中国:ZL201710483686.8 [2]黄铭枫,张柏岩,楼文娟.一种基于计算机视觉的气弹模型风洞试验平面风振响应测试方法[P].中国:ZL201811148430.2 [3]黄铭枫,徐卿,王义凡,楼文娟,吴列阳.一种沿海台风极值风速的数值天气预报-人工智能耦合预测方法[P].中国:ZL201810306812.7 [4]黄铭枫,寇金龙,胡德军,吴利泽,张永光,王帅.一种高空大跨网架滑移定位安装及监测方法[P].中国:ZL201810552632.7 [5]叶肖伟,董传智,黄铭枫,余世策.一种用于风洞试验的非接触式结构动力响应测量方法[P].中国:ZL201510918920.6 [6]黄铭枫,李强,楼文娟.一种高层建筑风致响应分析模型的不确定性分析方法[P].中国:ZL201510160477.0 [7]黄铭枫,涂志斌,楼文娟,陈勇.一种大跨桥梁下部结构风‑浪耦合作用荷载数值模拟方法[P].中国:ZL201410629276.6 [8]黄铭枫,涂志斌,楼文娟,宋建永.一种大跨桥梁结构风-浪耦合设计荷载效应确定方法[P].中国:ZL201410627587.9 发明专利(公开) [1]卞荣,王一枫,王淑红,詹斌,楼文娟,赵夏双,吴登国,徐海巍,黄铭枫.一种基于风载总计的输电塔整体脉动风荷载谱确定方法[P].中国:CN201810910670.5.2018-12-28 [2]楼文娟,解健,黄铭枫,梁洪超.一种适用于多分裂导线扭转刚度测试的试验装置[P].中国:CN201810593934.9.2018-11-02 [3]胡德军,张柏岩,黄铭枫,吴利泽,张永光,王帅.一种钢桁架液压提升施工的VR实现方法及系统[P].中国:CN201810500193.5.2018-10-23 [4]卞荣,楼文娟,黄赐荣,余江,黄铭枫,王淑红,王一枫,章李刚,郭勇.一种输电塔架风洞试验模型及其安装方法[P].中国:CN201711331610.X.2018-05-11 [5]卞荣,徐卿,楼文娟,俞恩科,黄铭枫,胡文侃,章李刚,张笑弟,王淑红.一种输电塔线的风致动力效应远程监测系统及应用[P].中国:CN201710986457.8.2018-03-27 [6]黄铭枫,李强,王义凡,楼文娟.一种面向灾害风险评估的热带气旋全路径模拟方法[P].中国:CN201710368159.2.2017-10-03 [7]黄铭枫,徐卿,楼文娟.一种结构模态参数识别方法[P].中国:CN201610976945.6.2017-03-29 实用新型专利(授权) [1]卞荣,吴列阳,徐卿,楼文娟,俞恩科,黄铭枫,胡文侃,章李刚,张笑弟,王淑红.一种输电线路风场监测系统[P].中国:ZL201821292779.9 [2]楼文娟,解健,黄铭枫,梁洪超.一种适用于多分裂导线扭转刚度测试的试验装置[P].中国:ZL201820895853.X [3]卞荣,楼文娟,黄赐荣,余江,黄铭枫,王淑红,王一枫,章李刚,郭勇.一种输电塔架风洞试验模型[P].中国:ZL201721740127.2 [4]卞荣,徐卿,楼文娟,俞恩科,黄铭枫,胡文侃,章李刚,张笑弟,王淑红.一种输电塔线的风致动力效应远程监测系统[P].中国:ZL201721358036.2 软件著作权 [1]基于底部弯矩等效的高层建筑等效静力风荷载计算软件V1.0,2015SR028268,原始取得,全部权利,2014-12-06. [2]基于线性振型法的高频天平模态风力计算软件V1.0,2015SR028278,原始取得,全部权利,2014-12-06. [3]基于模态修正法的高频天平模态风力计算软件V1.0,2015SR028274,原始取得,全部权利,2014-12-06. [4]基于Xie-Irwin法的高频天平模态风力计算软件V1.0,2015SR028282,原始取得,全部权利,2014-12-06. 教学与课程 [1].弹性力学(双语教学),本科生课程 [2].工程弹塑性力学,研究生课程 科研 (1)国家自然科学基金重点项目(2019.1~2023.12):输电塔线体系风致耦合场作用效应及抗风防灾研究,排名第2参加人。项目号:51838012; (2)国家自然科学基金面上项目(2016.1~2019.12):台风作用下超高层建筑风效应的跨尺度模拟和不确定性研究,项目负责人。项目号:51578504; (3)科技部政府间国际科技创新合作重点专项(2019.8~2022.7):极端环境荷载下风电结构灾变机制及防灾对,项目参与者。项目号:2018YFE0109500; (4)国家电网公司总部科技项目(2017.1~2018.12):输电线路风荷载设计参数及计算方法优化研究,子项目负责。项目号:5211JY17000M; (5)国家自然科学基金面上项目(2016.1~2019.12):超高层建筑的适风设计方法及其关键技术研究,子项目负责。项目号:51578505; (6)浙江省基础公益研究计划项目(2018.1~2020.12):基于台风风场多尺度模拟的近海风机结构易损性研究,项目负责人。项目号:LGG18E080001 (7)国家自然科学基金面上项目(2012.1~2015.12):输电塔线体系覆冰舞动现场实测与塔体破坏机理研究,项目参与者。项目批准号:51178424; (8)交通运输部科技项目(2011.4~2014.12):特大型桥梁综合防灾减灾理论与方法研究,子项目负责。项目批准号:2011318223170; (9)国家自然科学基金青年项目(2011.1~2013.12):复杂高层建筑的风致动力效应和时变可靠度研究,项目负责人。项目批准号:51008275; (10)浙江省科技计划项目(2012.01-2014.01)超高层建筑风致灾变的高效低成本控制研究,项目负责人。项目批准号:2012C21059 (11)中国博士后科学基金会特别资助(2011.3~2011.12):超高层建筑风致振动的高效低成本减振方法研究,项目负责人。项目批准号:201104736; (12)河南省电力公司电力科学研究院(2013):风参数的研究及防风偏措施优化的研究,项目负责人; (13)浙江省建设机械集团有限公司(2017-2018):舟山西堠门大跨越1260tm双平臂抱杆结构风洞试验及有限元分析研究,项目负责人; (14)前海世贸发展(深圳)有限公司(2014-2015):深圳前海世贸金融中心项目(高层320米)风洞试验研究,项目负责人; (15)江苏天地钢结构工程集团有限公司(2014):广西防城港电厂二期扩建工程2×660MW超超临界机组干煤棚网架风洞试验研究,项目负责人; (16)苏州市苏网建设工程有限公司(2017):神华国能宁夏鸳鸯湖电厂二期2×1000MW级机组扩建工程数值风洞模拟和风振分析研究,项目负责人; (17)绍兴高新区迪荡新城投资发展有限公司(2016):绍兴迪荡湖区市政工程和水系环境整治-环湖1#桥梁工程施工监控研究,项目负责人; (18)负责或参与完成的相关重大工程咨询项目:①610米高新广州电视塔工程抗风性能评估及结构优化分析;②天津高银117大厦(高597米)抗风设计优化项目;③杭州高铁东站大跨结构风洞试验项目;④舟山大跨越输电铁塔(高370米)风洞试验项目。 著作: [1]《Optimum Stiffness Design of Wind-excited Tall Buildings》,黄铭枫,VDM-Verlag,德国,2009-06,ISBN:978-3-639-16253-0,243页。 [2]《High-Rise Buildings under Multi-Hazard Environment-Assessment and Design for Optimal Performance》,黄铭枫,科学出版社/SPRINGER,2016-08,ISBN:978-981-10-1743-8,232页. 教学工作 [1].弹性力学(双语),本科生课程。 [2].工程弹塑性力学,研究生课程。

研究领域

结构风效应、结构动力可靠度优化和计算风工程。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

国际期刊论文: [1]Huang MF,Zhang BY,Guo Y,Huan RH,Lou WJ.2021.Wind-induced vibration and aerodynamic suppression for steel tubes with bolted joints in tubular transmission towers.Journal of Structural Engineering,Accepted. [2]Fabio Rizzo,Huang MF.2021.Peak value estimation for wind-induced lateral accelerations in a high-rise building.Structure and Infrastructure Engineering.Accepted. [3]Huang MF,Wang YF,Lou WJ.2020.Examination of Typhoon-Wind Profiles Reaching 1,000-m Height over the Southeast China Sea Based on Reanalysis Data Set and Mesoscale Simulation.Journal of Structural Engineering,ASCE,146(9):04020192. [4]Huang MF,Wu LY,Xu Q,Wan YF,Lou WJ and Bian R.2020.Bayesian Approach for Typhoon-Induced Fragility Analysis of Real Overhead Transmission Lines.2020.Journal of Engineering Mechanics,ASCE,146(9):04020092. [5]Lou WJ.Huang CR,Huang MF*,Liang HC and Yu J.2020.Galloping suppression of iced transmission lines by viscoelastic-damping inter-phase spacers.Journal of Engineering Mechanics,ASCE,146(12):04020135. [6]Xu HW,Lin N,Huang MF,Lou WJ.2020.Design tropical cyclone wind speed when considering climate change.Journal of Structural Engineering,ASCE,146(5):04020063-1. [7]Lou WJ,Bai H,Huang MF*,Duan ZY,Bian R.2020.Wind field generation for performance-based structural design of transmission lines in a mountainous area.Wind and Structures,31(2):165-183. [8]Chan CM,Ding F,Tse K T,Huang MF,Shum K M,Kwok K C S.2019.Optimal wind-induced load combinations for structural design of tall buildings.Wind and Structures,29(5):323-337. [9]Lou WJ,Wen ZP,Chen Y,Huang MF.2019.Wind tunnel study on bidirectional vibration control of lattice towers with omnidirectional cantilever-type eddy current TMD.Applied Sciences-Basel,9(15):2978. [10]Lou WJ,Huang CR,Huang MF*,Yu J.2019.An aerodynamic anti-galloping technique of iced 8-bundled conductors in ultra-high-voltage transmission lines.Journal of Wind Engineering and Industrial Aerodynamics,193:103972. [11]Huang MF*,Zhang BY,Lou WJ.2018.A computer vision-based vibration measurement method for wind tunnel tests of high-rise buildings.Journal of Wind Engineering and Industrial Aerodynamics,182:222-234. [12]Huang MF,Xu Q,Xu HW,Ni YQ,and Kwok Kenny.2018 Probabilistic assessment of vibration exceedance for a full-scale tall building under typhoon conditions,Journal of Structual Design of Tall and Special Building,e1516,DOI:10.1002/tal.1516. [13]Huang MF,Wang Yifan,Lou WJ,and Cao SY.2018.Multi-scale simulation of time-varying wind fields for Hangzhou Jiubao Bridge during Typhoon Chan-hom.Journal of Wind Engineering&Industrial Aerodyncamics,179,419-437. [14]Huang MF,Li Q,and Lou WJ.2018.Model-selection uncertainty quantifications in HFFB dynamic analyses of a complex tall building.Journal of Engineering Mechanics-ASCE,144(6):04018040. [15]Huang MF,Li Q,Xu*HW,and Lou WJ.2018.Non-stationary statistical modeling of extreme wind speed series records with exposure correction.Wind and Structures,26(3):129-146. [16]Huang MF,Tu ZB,Li Q,Lou WJ,and Li QS.2017.Dynamic wind load combination for a tall building based on copula functions.International Journal of Structural Stability and Dynamics,Vol.17,No.8(2017)1750092. [17]Huang MF,Huang S,Feng H and Lou WJ.2016.Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure.Wind and Structures,Vol.23,No.4(2016)275-300. [18]Huang MF,Li Qiang,Chan CM,Lou WJ,Kwok KCS and Li G.2015.Performance-based design optimization of tall concrete framed structures subject to wind excitations.Journal of Wind Engineering&Industrial Aerodynamics,139:70-81. [19]Huang MF*,Chan CM,Lou WJ,Bao S.2015.Time-domain Dynamic Drift Optimization of Tall Buildings Subject to Stochastic Wind Excitation.Structure and Infrastructure Engineering,Vol.11,No.2,97–111. [20]Lou WJ,Zhang L,Huang MF*,Li QS.2015.Multi-Objective Equivalent Static Wind Loads on Complex Tall Buildings Using Non-Gaussian Peak Factors.Journal of Structural Engineering,ASCE,141(11),04015033. [21]Lou WJ,Yang L,Huang MF*,and Yang X.2014.Two-Parameter Bifurcation and Stability Analysis for Nonlinear Galloping of Iced Transmission Lines.Journal of Engineering Mechanics,ASCE,140(11),04014081. [22]Lou WJ,Lv J,Huang MF*,Yang L,Yan D.2014.Aerodynamic force characteristics and galloping analysis of iced bundled conductors.Wind and Structures,Vol.18,No.2,135-154. [23]Huang MF,Pan X,Lou W,Chan CM and Li QS.2014.Hermite extreme value estimation of non-Gaussian wind load process on a long-span roof structure.Journal of Structural Engineering,ASCE,140(9),04014061. [24]Yiu CF,Chan CM,Huang MF,Li G.2014.Evaluation of lateral-torsional coupling in earthquake response of asymmetric multistory buildings.Journal of Structural Design of Tall and Special Buildings,Volume 23,Issue 13,pages 1007–1026. [25]Huang MF,Lou W,Chan CM,Lin N and Pan X.2013.Peak distributions and peak factors of wind-induced pressure processes on tall buildings.Journal of Engineering Mechanics,ASCE,139(12),1744–1756. [26]Huang MF,Lou WJ,Chan CM,Bao S.2013.Peak factors of non-Gaussian wind forces on a complex-shaped tall building.Journal of Structural Design of Tall and Special Buildings,22(14),1105–1118. [27]Lou WJ,Huang MF,Zhang M,Lin N.2012.Experimental and zonal modeling for wind pressures on double-skin facades of a tall building.Energy and Buildings,54:179-191. [28]Huang MF,Chan CM,and Lou WJ.2012.Optimal performance-based design of wind sensitive tall buildings considering uncertainties.Computers and Structures,98-99(7-16). [29]Huang MF,Chan CM,Lou WJ and Kwok KCS.2012.Statistical extremes and peak factors in wind-induced vibration of tall buildings.Journal of Zhejiang University-SCIENCE A(Applied Physics and Engineering),13(1):18-32. [30]Huang MF,Lou WJ,Yang L,Sun BN,Shen GH,and Tse KT.2012.Experimental and computational simulation for wind effects on the Zhoushan transmission towers.Structure and Infrastructure Engineering,8(8):781-799. [31]Huang MF,Chan CM,Kwok KCS.2011.Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings.Wind and Structures,2011,14(6):559-582. [32]Huang MF,Tse KT,Chan CM,and Lou WJ.2011.Integrated structural optimization and vibration control for improving wind-induced dynamic performance of tall buildings.International Journal of Structural Stability and Dynamics,11(6):1139-1161. [33]Huang MF,Lau IWH,Chan CM,Kwok KCS and Li G.2011.A hybrid RANS and kinematic simulation of wind load effects on full-scale tall buildings.Journal of Wind Engineering and Industrial Aerodynamics,99(11):1126–1138. [34]Huang MF,Tse KT,Chan CM,Kwok KCS,Hitchcock PA,Lou WJ.2011.Mode shape linearization and correction in coupled dynamic analysis of wind-excited tall buildings.Journal of Structural Design of Tall and Special Buildings,20(3):327-348(doi:10.1002/tal.620). [35]Lou WJ,Huang MF,Jin H,Shen GH,and Chan CM.2010.Three-dimensional Wind load effects and wind-induced dynamic responses of a tall building with X-shape.Journal of Structural Design of Tall and Special Buildings,19(8):885-900(doi:10.1002/tal.514). [36]Huang MF,Tse KT,Chan CM,Kwok KCS,Hitchcock PA,Lou WJ,Li G.2010.An integrated design technique of advanced linear-mode-shape method and serviceability drift optimization for tall buildings with lateral-torsional modes.Engineering Structures,32(8):2146-2156. [37]Chan CM,Huang MF,and Kwok KCS.2010.Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes.Engineering Structures,32(5):1252-1261. [38]Bao S,Jin WL,Huang MF.2010.Mechanical and magnetic hysteresis as indicators of the origin and inception of fatigue damage in steel.Journal of Zhejiang University-Science A,11(8):580-586. [39]Bao S,Jin WL,Huang MF,Bai Y.2010.Piezomagnetic hysteresis as a non-destructive measure of the metal fatigue process.NDT&E International,43:706-712. [40]Huang MF,Chan CM,Kwok KCS,and Hitchcock PA.2009.Cross correlation of modal responses of tall buildings in wind-induced lateral-torsional motion.Journal of Engineering Mechanics,ASCE,135(8):802-812. [41]Chan CM,Huang MF,and Kwok KCS.2009.Stiffness optimization for wind-induced dynamic serviceability design of tall buildings.Journal of Structural Engineering,ASCE,135(8):985-997. [42]Chan CM,Chui JKL,and Huang MF.2009.Integrated aerodynamic load determination and stiffness optimization of tall buildings.Journal of Structural Design of Tall and Special Buildings,18:59–80. [43]Tse T,Kwok KCS,Hitchcock PA,Samali B and Huang MF.2007.Vibration control of a wind-excited benchmark tall building with complex lateral-torsional modes of vibration.Advances in Structural Engineering,10(3):283-304. 国内期刊论文: [44]黄铭枫,刘国星,王义凡,徐卿.2020.耦合台风天气预报模式和实测数据的神经网络风速预测,建筑结构学报,知网首发. [45]黄铭枫*,孙建平,王义凡,楼文娟.2020.基于天气预报模式和大涡模拟的台风风场多尺度耦合数值模拟.建筑结构学报,41(2):63-70.(EI) [46]卞荣,徐卿,俞恩科,黄铭枫*,楼文娟,胡文侃,章李刚.2020.台风作用下输电塔线体系多元状态监测及风偏可靠度分析.振动与冲击,39(3):52-59.(EI) [47]黄铭枫*,叶何凯,楼文娟,孙轩涛,叶建云.2019.考虑风速风向分布的干煤棚结构风振疲劳分析.浙江大学学报(工学版),53(10):1916-1926.(EI) [48]黄铭枫*,寇金龙,胡德军,王帅,张柏岩.2019.基于BIM仿真与多目标决策的网架结构安装方案优选.施工技术,48(24):8-11. [49]卞荣,吴列阳,俞恩科,黄铭枫*,楼文娟,胡文侃,章李刚.2019.丘陵地形风场水平非均匀性与导线风荷载.工业建筑,49(6):99-106. [50]黄铭枫*,李强,涂志斌,楼文娟.2018.基于Copula函数的杭州地区多风向极值风速估计.浙江大学学报(工学版),52(5):828-835.(EI) [51]黄铭枫*,孙轩涛,冯鹤,楼文娟,胡德军.2018.基于风压谱和Hermite模型的大跨干煤棚风压场数值模拟研究.振动与冲击,37(23):111-119.(EI) [52]黄铭枫*,吴承卉,徐卿,张凤亮,楼文娟.2017.基于实测数据的某高层建筑结构动力参数和气动阻尼识别.振动与冲击,36(10):31-37,83.(EI) [53]黄嵩,黄铭枫*,叶何凯,胡德军.2017.定日镜结构的动力风效应和风致疲劳损伤研究.工程力学,34(12):120-130.(EI) [54]涂志斌,黄铭枫*,楼文娟.2017.基于EC法的风浪联合作用主塔-基础体系极限荷载效应.振动与冲击,36(19):125-134.(EI) [55]涂志斌,黄铭枫*,楼文娟.2016.风浪耦合作用下桥塔-基础体系的极限荷载效应研究.浙江大学学报(工学版),50(5):813-821.(EI) [56]冯鹤,黄铭枫*,李强,史传洪.2016.大跨干煤棚网壳风振时程分析和等效静风荷载研究.振动与冲击,35(1):164-173.(EI) [57]黄铭枫*,徐卿,吴承卉,楼文娟.2016.基于实测数据的香港K11大楼台风风场模拟与风振分析.建筑结构学报,37(12):1-9.(EI) [58]吴承卉,黄铭枫*,姜雄,陈勇军,邱建.2015.基于半刚性模型风洞试验的锅炉塔架风振分析.空气动力学报,33(3):353-359. [59]李强,单美弟,黄铭枫*,陈驹,冯鹤.2015.钢桁架人行天桥的振动实测分析与舒适度评价.深圳大学学报理工版,32(1):89-95. [60]涂志斌,黄铭枫*,楼文娟.2014.基于Copula函数的高层建筑动力风荷载相关性组合.浙江大学学报(工学版),48(8):1370-1375.(EI) [61]潘小涛,黄铭枫*,楼文娟.2014.复杂体型屋盖表面风压的高阶统计量与非高斯峰值因子.工程力学,2014,31(10):181-187.(EI) [62]张少锋,楼文娟*,吕中宾,段志勇,黄铭枫.2014.空旷平坦地面非平稳强风湍流特性研究.振动与冲击,33(23):68-73.(EI) [63]方伟定,何江飞*,朱建成,童建国,余智恩,黄铭枫.2014.强台风区苍南发电厂干煤棚风洞试验研究.空间结构,20(4):74-79. [64]黄铭枫*.基于风振性能的高层建筑抗风设计优化.2013.工程力学,30(2):240-246,253.(EI) [65]杨伦,黄铭枫*,楼文娟.2013.高层建筑周边三维瞬态风场的混合数值模拟.浙江大学学报(工学版),47(5):824-830.(EI) [66]林巍*,黄铭枫,楼文娟.2013.大跨屋盖脉动风压的非高斯峰值因子计算方法.建筑结构,43(15):83-87,14. [67]楼文娟*,林巍,黄铭枫,沈国辉,陈勇,闫东.2013.不同厚度新月形覆冰对导线气动力特性的影响.空气动力学报,31(5):616-622. [68]楼文娟*,罗罡,杨伦,黄铭枫.2013.风力机叶片周边瞬态风场的混合数值模拟.土木建筑工程信息技术,5(4):10-14. [69]林巍,楼文娟,申屠团兵,黄铭枫*.2012高层建筑脉动风压的非高斯峰值因子方法.浙江大学学报(工学版),46(4):691-697.(EI) [70]林巍,黄铭枫*,郭中秀,楼文娟.2012.台风下香港K11大楼风振响应实测及分析.深圳大学学报理工版,29(1):45-50. [71]章李刚,楼文娟*,黄铭枫.2012基于POD法控制模态选择的大跨屋盖结构风致动力响应分析.浙江大学学报(工学版),46(9):1599-1604.(EI) [72]楼文娟*,李进晓,沈国辉,黄铭枫.2011.超高层建筑脉动风压的非高斯特性.浙江大学学报(工学版),45(4):671-677.(EI) [73]艾华*,黄铭枫.2010.大跨度钢屋架整体安装方案的设计分析.钢结构,25(2):66-69. [74]陈俊文*,黄铭枫.2007.高层建筑钢结构基于风振响应和动力特性的优化设计.建筑钢结构进展,9(5):13-18. [75]黄铭枫*,唐家祥.2001.高层建筑粘弹性阻尼器的优化设置.华中科技大学学报(自然科学版),29(11):73-75.(EI)

学术兼职

长期担任Journal of Engineering Mechanics-ASCE和Journal of Structural Engineering-ASCE等国际期刊审稿人。自2013年起,担任国际SCI期刊WIND AND STRUCTURES, An International Journal编委。

推荐链接
down
wechat
bug