当前位置: X-MOL首页全球导师 国内导师 › 李学进

个人简介

李学进,博士,浙江大学百人计划研究员,博士生导师,任职于浙江大学流体工程研究所。近年来主要从事微纳米流体力学、生物流体力学及分子血液流变学等交叉领域研究,共在PNAS、Science Advances、Biophysical Journal、Journal of Biomechanics、Physics of Fluids、Macromolecules、PLOS Computational Biology、Soft Matter、Nanoscale等SCI期刊发表学术论文50篇;参与撰写学术专著4部、科普散文2部。研究工作已开始受到国内外同行专家的认可和关注,已发表的论文共被SCI引用1300余次,H指数22。 教育背景 2004年09月-2009年06月:中国科学技术大学,理学博士 2002年09月-2004年07月:中国科学技术大学,金融学(双)学士 2000年09月-2004年07月:中国科学技术大学,工学学士 工作经历 2018年07月至今: 浙江大学工程力学系 & 交叉力学研究中心,“百人计划”研究员 2017年07月-2018年06月: 美国布朗大学应用数学系 & 流体力学及湍流研究中心,研究副教授 2014年07月-2017年06月: 美国布朗大学应用数学系 & 流体力学及湍流研究中心,研究助理教授 2012年09月-2014年06月: 美国布朗大学应用数学系,博士后 2009年07月-2012年05月: 中国科学技术大学高分子科学与工程系,博士后 (招收上述研究方向的研究生和博士后,博士后薪酬20-30万元/年,email: xuejin_li@zju.edu.cn) 奖励或荣誉 浙江大学优秀班主任,2020年 美国布朗大学荣誉硕士,2018年 美国能源部ASCR Leadership Computing Challenge Award,2017年 中国科学院王宽诚人才奖—王宽诚博士后工作奖励基金获得者,2010年 全国高分子学术论文报告会优秀墙报奖,2009年 中国科学技术大学优秀毕业生,2009年 中国科学院朱李月华博士生奖学金,2009年 教学与课程 材料力学,本科生课程 2019-2020学年,春夏学期 2020-2021学年,春夏学期 生物力学基础,本科生课程 2018-2019学年,春夏学期 2019-2020学年,春夏学期 2020-2021学年,春夏学期 科研 [1] 国家自然科学基金面上项目,红细胞搭载纳米颗粒的增强输运研究,2021/01-2024/12,主持 [2] 国家级青年人才项目,健康与疾病状态下的血细胞力学与血流动力学,2018/07-2023/12,主持 [3] 浙江大学百人计划启动经费,血细胞膜结构缺陷、血细胞力学、血流动力学与血液疾病,2018/07-2024/06,主持 [4] 美国国立卫生研究院NIH U01项目,镰状细胞贫血症的多尺度模拟,2013/07-2018/06,参与 [5] 国家自然科学基金青年科学基金项目,流场驱动大分子迁移穿过微通道过程的计算机模拟,2011/01-2013/12,主持 [6] 教育部中央高校基本科研业务费资助青年项目,微流控通道内高分子链构象转变及迁移动力学理论与模拟,2010/01-2011/12,主持 研究与成果 论文统计 Researcher ID: B-8559-2009 SCI学术论文: 49篇,包括1篇Science Advances, 3篇PNAS, 7篇Biophysical Journal, 2篇Macromolecules, 2篇Chemical Communications, 3篇Soft Matter, 4篇Nanoscale, 3篇PLOS Computational Biology, 1篇Journal of Fluid Mechanics, 1篇Philosophical Transactions of the Royal Society of London, 1篇Journal of Biomechanics, 1篇Journal of Biomechanical Engineering, 1篇Journal of Computational Physics, 4篇Journal of Chemical Physics, 2篇Journal of Physical Chemistry B, 2篇Physical Chemistry Chemical Physics和2篇Polymer. 专著章节 :6 部 科普散文 (Essay): 2 部 H-指数: 27 (Google Scholar); 22 (ISI Web of Science) 文章引用: > 1770 (Google Scholar); > 1300 (ISI Web of Science) 撰写书籍 [B6] X. J. Li, H. J. Lu, and Z. L. Peng. Continuum- and particle-based modeling of human red blood cells. Chapter in: W. Andreoni, S. Yip (eds) Handbook of Materials Modeling (Vol. 2). Springer, 2019, online. [B5] X. J. Li and H. Lei. Multiscale modeling of sickle cell anemia. Chapter in: W. Andreoni, S. Yip (eds) Handbook of Materials Modeling (Vol. 2). Springer, 2019, online. [B4] 梁好均,李学进,何学浩. 大分子自组装理论与模拟. 《大分子自组装新编》,刘世勇等著. 科学出版社, 2018, 75-103. [B3] Z. Li, X. Bian, X. J. Li, M. Deng, Y.-H. Tang, B. Caswell, and G. E. Karniadakis. Dissipative particle dynamics: foundation, evolution, implementation, and applications. Chapter in: T. Bodnar, G. P. Galdi, S. Necasova (eds) Particles in flows. Birkhauser/Springer, 2017, 255-326. [B2] X. H. He, X. J. Li, P. Chen, and H. J. Liang. Dynamics simulations of microphase separation in block copolymers. Chapter in: Q. P. Guo (ed) Polymer morphology: principles, characterization, and processing. John Wiley & Sons, Inc., 2016, 283-298. [B1] 李学进,黄睿,陈鹏,蒋滢,梁好均. 高分子科学中的理论计算和模拟方法简介. 《高分子科学前沿与进展》,董建华主编. 科学出版社, 2006, 375-395. 科普散文 [E2] X. J. Li and G. E. Karniadakis. In-silico medicine: multiscale modeling of hematological disorders. SIAM News 2017, 50, online. [E1] X. J. Li, Z. Li, X. Bian, M. G. Deng, C. H. Kim, Y.-H. Tang, A. Yazdani, and G. E. Karniadakis. Dissipative Particle Dynamics, Overview. Essay in Encyclopedia of Nanotechnology. Springer, 2016, 793–800. 招聘信息 博士/硕士研究生 课题组每年计划招收博士和硕士研究生1-2人,研究方向为微纳流体力学、细胞生物力学、分子血液流变学与软物质力学等方向。 热忱欢迎力学等相关专业的学子来信咨询课题详细情况。 博士后招聘 课题组拟招收1-2名博士后研究人员,合作导师:李学进研究员 拟从事的研究方向: 微纳尺度流动与微流控器件设计; 健康与疾病中的血细胞力学与血流动力学; 仿生流体力学。 招聘要求: 已获得或即将获得力学、化学、材料或生物医学工程等相关专业博士学位,并有证明科研能力的相关论文或研究成果; 勤奋进取,认真踏实,较强的科研创新能力,良好团队协作精神; 具有较强的语言表达能力和沟通能力,良好的英语读写和交流能力; 全职在浙江大学工作。 待遇条件: 待遇按浙江大学标准执行,年薪20-30万; 良好的科研及工作环境; 课题组将协助申请人申请国家博士后基金,国家自然科学基金等; 工作期间将有机会赴美国布朗大学、麻省理工学院、佐治亚大学、佛罗里达大西洋大学、新加坡南洋理工大学、英国帝国理工学院、瑞士Lugano大学等合作课题组开展交流合作。

研究领域

微纳米流体力学、生物流体力学、分子血液流变学

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

2021 [J50]X.J.Qi,S.Wang,S.H.Ma,K.Q.Han,and X.J.Li*.Quantitative prediction of flow dynamics and mechanical retention of surface-altered red blood cells through a splenic slit.Phys.Fluids,2021,13,in revision. 2020 [J49]S.Wang,X.J.Li*,X.B.Gong,and H.J.Liang.Mechanistic modeling of spontaneous penetration of carbon nanocones into membrane vesicle.Nanoscale 2020,12,2686-2694. [J48]Y.X.Deng,D.Papageorgiou,X.J.Li,N.Perakakis,C.Mantzoros,M.Dao,and G.E.Karniadakis*.Quantifying fibrinogen-dependent aggregation of red blood cells in type 2 diabetes mellitus.Biophys.J.2020,119,900-912. [J47]G.S.Li,T.Ye*,S.T.Wang,X.J.Li,and R.UI Haq.Numerical design of a highly efficient microfluidic chip for blood plasma separation.Phys.Fluids 2020,32,031903. [J46]戚晓菁,李学进*.微流控芯片技术在血细胞变形和流动性分析研究中的应用进展.实验流体力学2020,34(2),1-10.(邀稿) [J45]G.S.Li,T.Ye*,and X.J.Li.Parallel modeling of cell suspension flow in complex micro-networks with inflow/outflow boundary conditions.J.Comput.Phys.2020,401,109031. 2019 [J44]L.Lu,Z.Li,H Li,X.J.Li,P.Vekilov,and G.E.Karniadakis*.Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies.Sci.Adv.2019,5,eaax3905. [J43]S.Wang,H.Guo,Y.F.Li*,and X.J.Li*.Penetration of nanoparticles across a lipid bilayer:Effects of particle stiffness and surface hydrophobicity.Nanoscale 2019,11,4025-4034. [J42]Y.X.Deng#,D.P.Papageorgiou#,H.-Y,Chang,S.Z.Abidi,X.J.Li*,M.Dao,and G.E.Karniadakis*.Quantifying shear-induced deformation and detachment of individual adherent sickle red blood cells.Biophys.J.2019,116,360-371. 2018 [J41]H.Li#,L.Lu#,X.J.Li,P.Buffet,M.Dao*,G.E.Karniadakis*,and S.Suresh*.Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders.Proc.Natl.Acad.Sci.U.S.A.2018,115,9574-9579. [J40]D.P.Papageorgiou#,S.Z.Abidi#,H.-Y.Chang,X.J.Li,G.J.Kato,G.E.Karniadakis,M.Dao*,and S.Suresh*.Simultaneous polymerization and adhesion under hypoxia in sickle cell anemia.Proc.Natl.Acad.Sci.U.S.A.2018,115,9473-9478.(Highlighted by MIT News Report,The Bioscientist,Xinhua News,and Tech Times) [J39]L.P.Chen,X.J.Li,Y.Zhang,T.Chen,M.He,X.Yin,S.Y.Xiao*,and H.J.Liang*.Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.Nanoscale 2018,10,11969-11979. [J38]H.-Y.Chang,A.Yazdani,X.J.Li,K.A.A.Douglas,C.Mantzoros,and G.E.Karniadakis*.Quantifying platelet margination in diabetic blood flow.Biophys.J.2018,115,1371-1382.(BJ Highlighted Article) [J37]L.Lu#,Y.X.Deng#,X.J.Li,H.Li,and G.E.Karniadakis*.Understanding the twisted structure of amyloid fibrils via molecular simulations.J.Phys.Chem.B 2018,122,11302-11310. 2017年及之前 [J36]X.J.Li,E.Du,M.Dao*,S.Suresh,and G.E.Karniadakis*.Patient-specific modeling of individual sickle cell behavior under transient hypoxia.PLOS Comput.Biol.2017,13,e1005426.(Highlighted on Biophysical Society Blog) [J35]X.J.Li*,M.Dao,G.Lykotrafitis,and G.E.Karniadakis*.Biomechanics and biorheology of red blood cells in sickle cell anemia.J.Biomech.2017,50,34-41.(Quarterly Most-downloaded Articles,as of June 2017) [J34]X.J.Li*,H.Li,H.-Y.Chang,G.Lykotrafitis,and G.E.Karniadakis*.Computational biomechanics of human red blood cells in hematological disorders.J.Biomech.Eng.2017,139,020804. [J33]H.-Y.Chang,X.J.Li*,and G.E.Karniadakis*.Modeling of biomechanics and biorheology of red blood cells in type-2 diabetes mellitus.Biophys.J.2017,113,481-490.(BJ Highlighted Article) [J32]A.Blumers,Y.-H.Tang,Z.Li,X.J.Li,and G.E.Karniadakis*.GPU-accelerated red blood cells simulations with transport dissipative particle dynamics.Comput.Phys.Commun.2017,217,171-179. [J31]L.Lu,H.Li,X.Bian,X.J.Li,and G.E.Karniadakis*.Mesoscopic adaptive resolution scheme toward understanding of interactions between sickle cell fibers.Biophys.J.2017,113,48-59. [J30]X.J.Li,E.Du,H.Lei,Y.-H.Tang,M.Dao,S.Suresh,and G.E.Karniadakis*.Patient-specific modeling and predicting blood viscosity in sickle-cell anemia.Interface Focus 2016,6,20150065. [J29]H.Y.Chang,X.J.Li*,H.Li,and G.E.Karniadakis*.MD/DPD multiscale framework for predicting morphology and stresses of red blood cells in health and disease.PLOS Comput.Biol.2016,12,e1005173. [J28]L.Lu,X.J.Li*,P.G.Vekilov,and G.E.Karniadakis*.Probing the twisted structure of sickle hemoglobin fibers via particle simulations.Biophys.J.2016,110,2085-2093.(Featured Article) [J27]A.Yazdani#,X.J.Li#,and G.E.Karniadakis*.Dynamic and rheological properties of soft biological cell suspensions.Rheol.Acta 2016,55,433-449. [J26]Y.-H.Tang,Z.Li,X.J.Li,M.G.Deng,and G.E.Karniadakis*.Non-equilibrium dynamics of vesicles and micelles by self-assembly of block copolymers with double thermoresponsivity.Macromolecules 2016,49,2895-2903. [J25]K.Lykov#,X.J.Li#,I.V.Pivkin*,and G.E.Karniadakis*.Inflow/Outflow boundary conditions for particle-based blood flow simulations:Application to arterial bifurcations and trees.PLOS Comput.Biol.2015,11,e1004410.(Highlighted on LAMMPS homepage) [J24]Z.Li,Y.-H.Tang,X.J.Li,and G.E.Karniadakis*.Mesoscale modeling of phase transition of thermoresponsive polymers.Chem.Commun.2015,51,11038-11040. [J23]X.J.Li,Y.-H.Tang,H.J.Liang*,and G.E.Karniadakis*.Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems.Chem.Commun.2014,50,8306-8308. [J22]X.J.Li,Z.L.Peng,H.Lei,M.Dao,and G.E.Karniadakis*.Probing red blood cell mechanics,rheology and dynamics with a two-component multiscale model.Philos.T.R.Soc.A.2014,372,20130389. [J21]X.J.Li,P.M.Vlahovska and G.E.Karniadakis*.Continuum-and particle-based modeling of shapes and dynamics of red blood cells in health and disease.Soft Matter 2013,9,28-37.(Invited tutorial review article) [J20]X.J.Li*.Shape transformations of bilayer vesicles from amphiphilic block copolymers:A dissipative particle dynamics simulation study.Soft Matter 2013,9,11663-11670. [J19]Z.L.Peng,X.J.Li,I.V.Pivkin,M.Dao,G.E.Karniadakis,and S.Suresh*.Lipid-bilayer and cytoskeletal interactions in a red blood cell.Proc.Natl.Acad.Sci.U.S.A.2013,110,13356-13361. [J18]X.J.Li*,I.V.Pivkin*,and H.J.Liang*.Hydrodynamic effects on flow-induced polymer translocation through a microfluidic channel.Polymer 2013,54,4309-4317. [J17]X.J.Li,B.Caswell,and G.E.Karniadakis*.Effect of chain chirality on the self-assembly of sickle hemoglobin.Biophys.J.2012,103,1130-1140. [J16]X.J.Li,A.S.Popel,and G.E.Karniadakis*.Blood-plasma separation in Y-shaped bifurcating microfluidic channels:A dissipative particle dynamics simulation study.Phys.Biol.2012,9,026010. [J15]X.J.Li*,X.L.Li,M.G.Deng,and H.J.Liang*.Effects of electrostatic interactions on the polymer translocation through a narrow pore under different solvent conditions:A dissipative particle dynamics simulation study.Macromol.Theory Sim.2012,21,120-129.(Most-accessed articles during the period of 2012/2013) [J14]Y.F.Li,X.J.Li,Z.H.Li,and H.J.Gao*.Surface-structure-regulated penetration of nanoparticles across cell membrane.Nanoscale 2012,4,3768-3775. [J13]M.G.Deng,X.J.Li,H.J.Liang,B.Caswell,and G.E.Karniadakis*.Simulation and modeling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibers.J.Fluid Mech.2012,711,192-211. [J12]J.Y.Guo,X.J.Li*,and H.J.Liang*.Dissipative particle dynamics simulation of fluid-driven polymer through a microchannel.Acta Polym.Sin.2012,2,160-167. [J11]J.Y.Guo,X.J.Li*,Y.Liu,and H.J.Liang*.Flow-induced translocation of polymers through a fluidic channel:A dissipative particle dynamics simulation study.J.Chem.Phys.2011,134,134906. [J10]P.T.He,X.J.Li*,M.G.Deng,T.Chen,and H.J.Liang*.Complex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents.Soft Matter 2010,6,1539-1546. [J9]P.T.He#,X.J.Li#,*,D.Z.Kou,M.G.Deng,and H.J.Liang*.Complex micelles from the self-assembly of amphiphilic triblock copolymers in selective solvents.J.Chem.Phys.2010,132,204905. [J8]M.G.Deng,Y.Jiang,X.J.Li*,Y.Liu,L.Wang,and H.J.Liang*.Conformation behavior of a charged-neutral star micelle in salt-free solution.Phys.Chem.Chem.Phys.2010,12,6135-6139. [J7]X.J.Li,I.V.Pivkin,H.J.Liang*,and G.E.Karniadakis*.Shape transformations of membrane vesicles from amphiphilic triblock copolymers:A dissipative particle dynamics simulation study.Macromolecules 2009,42,3195-3200. [J6]X.J.Li,J.Y.Guo,Y.Liu,and H.J.Liang*.Microphase separation of poly(styrene-b-isoprene)diblock copolymer:A dissipative particle dynamics simulation study.J.Chem.Phys.2009,130,074908. [J5]X.J.Li,Y.Liu,L.Wang,M.G.Deng,and H.J.Liang*.Fusion and fission pathways of vesicles from amphiphilic triblock copolymers:A dissipative particle dynamics simulation study.Phys.Chem.Chem.Phys.2009,11,4051-4059. [J4]X.J.Li,M.G.Deng,Y.Liu,and H.J.Liang*.Dissipative particle dynamics simulations of toroidal structure formations of amphiphilic triblock copolymers.J.Phys.Chem.B 2008,112,14762-14765. [J3]S.L.Rao,X.J.Li,and H.J.Liang*.Developing coarse-grained force fields for polystyrene with different chain lengths from atomistic simulation.Macormol.Res.2007,15,610-616. [J2]X.J.Li,D.Z.Kou,S.L.Rao,and H.J.Liang*.Developing a coarse-grained force field for the diblock copolymer poly(styrene-b-butadiene)from atomistic simulation.J.Chem.Phys.2006,124,204909. [J1]X.J.Li,X.J.Ma,L.Huang,and H.J.Liang*.Developing coarse-grained force fields for cis-poly(1,4-butadiene)from the atomistic simulation.Polymer 2005,46,6507-6512.

学术兼职

现担任《Frontiers in Physics》 (影响因子2.638;2019-) 期刊副主编,《中南大学学报(英文版》(影响因子1.249;2020-) 青年编委,中国力学学会微纳尺度流动专业组委员;(曾)担任美国国立卫生研究院K23/K25项目、英国皇家学会FLIAR项目以及意大利药品管理局AIFA项目评审专家,以及包括Soft Matter、Biophysical Journal、Macromolecules、ACS Nano、Applied Physics Letters、Physical Review E、Physics of Fluids、Journal of Applied Physics、Journal of Biomechanics等在内的50余种SCI学术期刊审稿人。

推荐链接
down
wechat
bug