个人简介
高扬,浙江大学“百人计划”研究员,博士生导师,国家级青年人才项目获得者(2020)。开发了基于原子力显微镜的埃压痕技术(Angstrom-indentation),可用于精确测量和调控二维材料和范德华异质结的层间力学性质,并用该技术直接测量了碳化硅上外延生长的氧化石墨烯的层间弹性模量。此外还利用该技术实现了常温下压力驱使的双层石墨烯-超硬单层金刚石结构的相变,并利用埃压痕技术首次直接测量了单层金刚石结构的弹性模量。相关工作以第一作者身份发表于Nature Materials、Nature Nanotechnology等国际知名期刊。利用金刚石对顶砧(diamond anvil cell)技术探索了石墨烯莫尔超晶格在高压下的能带调控和电子学行为,相关工作发表于Physical Review Letters、PNAS等知名期刊。具体可见google scholar。
现阶段实验室的重点研究方向为范德华异质结材料的力学性质及其高压力-电耦合行为。欢迎力学、物理、材料等相关背景的博士后、研究助理、博士生、硕士生以及高年级本科生加入我的课题组。如感兴趣,可将个人简历及相关代表作发送至。
Yang Gao,Assitant Professor at the School of Aeronautics and Astronautics.Our research is focused on nano-mechanics,extreme mechanics and high pressure physics.We are using experimental tools like atomic force microscopy and diamond anvil cell to invesitage the mechanical and other physical properties of novel materials and structures.We have published journal articles on Nature Materials,Nature Nanotechnology,PRL,etc.Postdoc and graduate students positions are available.Highly-motivated undergrads are also welcome.
教育背景和工作经历
2020年-至今:浙江大学航空航天学院,“百人计划”研究员
2017年11月-2020年5月:美国加州大学伯克利分校,材料科学与工程系,博士后研究员
2017年5月-2017年7月:美国纽约市立大学先进科学研究中心,博士后研究员
2012年8月-2017年5月:美国佐治亚理工学院,物理系,博士
2008年9月-2012年6月:北京大学,物理学院,学士
Education and Research Backgrounds
2020-present:School of Aeronautics and Astronautics,Assistant Professor
2017.11-2020.5:UC Berkeley,Department of Materials Science and Engineering,Postdoc Scholar
2017.5-2017.7:Advanced Science Research Center,CUNY,Postdoc Scholar
2012.8-2017.5:Georgia Institute of Technology,Physics,Ph.D.
2008.9-2012.8:Peking University,Physics,B.S.
一、研究概述Research overview
本课题组致力于探索纳米材料以及低维系统的力学性质,尤其是在超高压强等极端环境下的力学响应和相关物理性质。
We explore the mechanical properties of nano-materials and low-dimensional systems,especially their emergent mechanical response and physical behavior under extreme enviroment,like high pressure.
二、研究课题Research projects
1.纳米力学Nano-mechanics
我们开发的基于原子力显微镜的埃压痕技术(Angstrom-indentation,Å-I)可对材料施加埃(Å)级别的极微小形变,能在不损坏材料的前提下揭示纳米材料(例如二维材料、纳米管、薄膜等)的弹性力学性质。
We develop an atomic force microscopy(AFM)based methodology:Angstrom-indentation(Å-I).By applying a sub-nm scale deformation with sub-Åresolution,are we able to investigate the mechanical properties of ultra-thin materials without destructions.
埃压痕技术应用实例:石墨烯及其他二维材料。石墨烯层内的碳原子通过sp2共价键结合,而碳原子层之间则通过弱得多的范德华作用力耦合,因此石墨烯和其他二维材料都表现出明显的非各向同性。二维材料的层间距普遍小于1nm,因此埃压痕技术尤其适用于二维材料等超薄材料纵向力学性质的表征。
Representative application ofÅ-I:graphene and other 2D materials.The graphene carbon atoms in the same layer are covalently bonded while the layers are coupled by the much weaker van der Waals interactions.Thus graphene and other 2D materials show strong anisotropy.The interlayer spacing of 2D materials are usually less than 1nm,so the Angstrom-indentation is the perfect method to characterize the out-of-plane elasticity of 2D materials.
2.范德华异质结的力学性质Mechanical properties of van der Waals heterostructures
范德华异质结指不同二维材料通过层间范德华力像乐高积木一样实现的纵向堆叠。二维材料种类繁多且性质各异,当他们通过范德华作用力结合到一起后,在仍保持超薄厚度的基础上呈现出完全不同于单体二维材料的全新的物理性质。范德华异质之所以不同于普通二维材料,其根源便在于层间的范德华耦合,因此精确表征和调控层间作用力对范德华异质结的基础认知和潜在应用均有着十分重大的意义。
Van der Waals(vdW)heterostructures refer to the simple vertical stacking of various 2D materials by interlayer vdW interactions,like Legos.Investigation of the interlayer vdW coupling is of fundametal significance,since the emergent exotic properties of vdW heterostructures are the direct consuquences of the vdW interactions.
3.高压科学和极端力学High-pressure science and extreme mechanics
随着人类文明和科学技术的快速发展,人类活动范围将不可避免的从地表这样适宜生存的区域扩展到诸如深海、外太空、地心等极端环境。而在这些环境中,极端高压是一个极为常见的极端环境参量。纳米材料和纳米结构在高压等极端条件下的力学响应是本课题组的重点研究方向之一。
With the rapid development of technology,human territory are inevitably entering those unexplored extreme environments,like deep sea,outer space and Earth core.Ultra-high pressure is a common parameter in those extreme environments.Therefore,studying the mechanical responses of nano-materials and structures under high pressure is of great importance.
3.1高压诱导的超硬单层金刚石Pressure-induced ultra-hard monolayer diamond
碳化硅上外延生长的双层石墨烯可在常温和10GPa左右的压强下转化为单层金刚石结构。我们利用埃压痕技术实现了该相变同时首次测量了单层金刚石的杨氏模量,约为1TPa,与块体金刚石接近。
High pressure can drive a phase transition frombilayer graphene grown on SiC to monolayer diamond.We use Angstrom-indentation to apply the required pressure to realize this phase transition and for the first time directly measure the Young's modulus of the monolayer diamond(diamene).Diamene's Young's modulus is~1TPa,quite close to the value of cubic diamond.
双层石墨烯-单层金刚石结构相变Structural phase transition from bilayer graphene to monolayer diamond
3.2高压调控石墨烯莫尔超晶格的能带结构和电子学性质Tuning the bandstructure and electronic properties of graphene Moire superlattices via high pressure
本课题组亦使用金刚石对顶砧(diamond anvil cell,DAC)模拟极端高压(50GPa)环境,并探索石墨烯莫尔超晶格和其他范德华异质结的高压物理性质。
We also employ diamond anvil cell(DAC)to generate extremely high hydrostatic pressure to study the emergent physical properties of graphene moirésuperlattices and other vdW heterostructures.
三、实验仪器Lab equipments
实验室正在建设中!
We are building the lab now!Cutting-edge equipments are coming.
四、课题组成员Group members
欢迎博士生、研究生和本科生加入我的课题组,同时也非常欢迎有独立研究能力的博士后加入我们的团队。
PhD and master students are more than welcome!We are also recruiting highly motivated postdoc scholars!
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
10.Yang Gao,Xianqing Lin,Thomas Smart,Penghong Ci,Kenji Watanabe,Takashi Taniguchi,Raymond Jeanloz,Jun Ni,and Junqiao Wu*,'Band engineering of large-twist-angle graphene/h-BN moire superlattices with pressure',Physical Review Letters,125,226403(2020)(PRL_2020.pdf)
9.Huili Liu#,Xiaoxia Yu#,Kedi Wu,Yang Gao,Sefaattin Tongay,Ali Javey,Lidong Chen*,Jiawang Hong*and Junqiao Wu*,'Extreme in-plane thermal conductivity anisotropy in titanium trisulfide caused by heat-carrying optical phonons',Nano Letters,20(7),5221-5227(2020)(NanoLett_2020.pdf)
8.Jia Lin#,Hong Chen#,Yang Gao#,Yao Cai,Ahmed Etman,Joohoon Kang,Teng Lei,Zhenni Lin,Li Na Quan,Qiao Kong,Matthew Sherburne,Mark Asta,Junliang Sun,Michael F.Toney,Junqiao Wu*and Peidong Yang*,'Pressure induced semiconducting to metallic phase transition of a charge-ordered Indium halide perovskite',PNAS,116(47),23404-23409(2019)(PNAS_2019.pdf)
7.Filippo Cellini,Yang Gao,and Elisa Riedo*,'Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard thin films and nanostructures',Scientific Reports,9(1),4075,(2019)(SciRep_2019.pdf)
6.Francesco Lavini#,Annalisa Calo#,Yang Gao,Edoardo Albisetti,Tai-De Li,Tengfei Cao Guoqing Li,Linyou Cao,Carmela Aruta*and Elisa Riedo*,'Friction and work function oscillatory behavior for even and odd number of layers in polycrystalline MoS2',Nanoscale,10(17),8304-8312,(2018)(Nanoscale_2018.pdf)
5.Yang Gao#,Tengfei Cao#,Filippo Cellini,Claire Berger,Walt de Heer,Erio Tosatti,Elisa Riedo*and Angelo Bongiorno*,'Ultrahard carbon film from epitaxial two-layer graphene',Nature Nanotechnology,13(2),133-138,(2018)(NatureNano_2018.pdf)
4.Alper Gurarslan,Shuping Jiao,Tai‐De Li,Guoqing Li,Yiling Yu,Yang Gao,Elisa Riedo,Zhiping Xu and Linyou Cao*,'Van der Waals force isolation of monolayer MoS2',Advanced Materials,28(45),10055-10060,(2016)(AdvMat_2016.pdf)
3.Yang Gao#,Suenne Kim#,Si Zhou,Hsian-Chih Chiu,Daniel Nelias,Claire Berger,Walt de Heer,Roman Sordan,Laura Polloni,Angelo Bongiorno*and Elisa Riedo*,'Elastic coupling between the layers in 2D materials',Nature Materials,14(7),714-720(2015)(NatureMat_2015.pdf)
2.Abdelghani Laraoui,Halley Aycock-Rizzo,Yang Gao,Xi Lu,Elisa Riedo*and Carlos Meriles*,'Imaging thermal conductivity with nanoscale resolution using a scanning spin probe',Nature Communications,6,(2015)(NatureComm_2015.pdf)
1.Keith Carroll,Xi Lu,Suenne Kim,Yang Gao,Hoe-Joon Kim,Suhas Somnath,Laura Polloni,Roman Sordan,William King,Jennifer Curtis*and Elisa Riedo*,'Parallelization of thermochemical nanolithography',Nanoscale,6(3),1299-1304,(2014)(Nanoscale_2014.pdf)