当前位置: X-MOL首页全球导师 国内导师 › 杨畅

个人简介

Education 2008-2011 University of Lille Science and Technology, PHD 2006-2008 University of Lille Science and Technology, Master 2002-2006 University of Wuhan, Bachelor Work Experience 2022 April - Harbin Institute of Technology, Doctoral supervisor 2019 May University of Toulouse, Visiting Professor 2018 December - Harbin Institute of Technology, Associate Professor 2014-2018 Harbin Institute of Technology, Assistant Professor 2011-2013 University of Lyon, Post-Doc Scientific Projects 动力学模型的数值模拟及并行计算的研究,国家自然科学基金(11401138),主持,2015-2017 关于高阶强异向性扩散方程渐近算法的研究,黑龙江省自然科学基金(LH2019A013), 主持,2019.07-2022.06 托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究,国家自然科学基金(12371432),主持,2024-2027

研究领域

Numerical resolution of kinetic equations Asymptotic preserving methods for elliptic equations Mathematical modeling and simulation for biology

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

T. Chen, C. Yang*, L. M. Tine, Z. Guo, A new collision avoidance model with random batch resolution strategy, preprint. https://arxiv.org/abs/2209.01977 L. X. Li, C. Yang*, Block preconditioning methods for asymptotic preserving scheme arising in anisotropic elliptic problems, preprint. https://arxiv.org/abs/2111.08519 L. Zhang, C. Yang, Z. Guo, W. Yao* and D. Zhang, A multi-tasking novel variational model for image decolorization and denoising. Inverse Problems and Imaging, 2023. Doi: 10.3934/ipi.2023020 L. Li, C. Yang*, APFOS-Net: Asymptotic preserving scheme for anisotropic elliptic equations with deep neural network. Journal of Computational Physics, 2022, 453, 110958. C. Yang*, M. Mehrenberger, Highly accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson Simulations, Journal of Computational Physics, 2021, 446, 110632.https://doi.org/10.1016/j.jcp.2021.110632 C. Yang*, L. M. Tine, Analysis and numerical simulations of a reaction-diffusion model with fixed active bodies,SIAM Journal on Applied Mathematics, 2021, 81(4):1339-1360, DOI: 10.1137/20M1343385 C. Yang*, F. Deluzet, J. Narski , Preserving the accuracy of numerical methods discretizing anisotropic elliptic problems, (https://arxiv.org/abs/1911.11482), preprint. C. Yang, F. Deluzet*, J. Naski, On the numerical resolution of anisotropic equations with high order differential operators arising in plasma physics, Journal of Computational Physics, 2019, 386, 502-523. C. Yang*, M. Wu, A singular parameterized finite volume method for the advection-diffusion equation in irregular geometries, Journal of Computational Mathematics, 2019, 37, 579-608. C. Yang*, J. Claustre, F. Deluzet, Iterative solvers for elliptic problems with arbitrary anisotropy strengths, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2018, 16(4), 1795–1823. C. Yang, L. M. Tine*, A Hybrid Finite Volume Method for Advection Equations and Its Applications in Population Dynamics, Numerical Methods for Partial Differential Equations, 2017, 33, 1114–1142. Y. Zhang, S. Lou, X. Yang and C. Yang*, Spin-orbit-torque-induced magnetic domain wall motion in Ta/CoFe nanowires with sloped perpendicular magnetic anisotropy, Scientific Reports, 2017, 7, DOI: 10.1038/s41598-017-02208-y. C. Yang, F. Filbet*, Conservative and non-conservative methods based on Hermite weighted essentially-non-oscillatory reconstruction for Vlasov equations, Journal of Computational Physics, 2014, 279, 18-36. F. Filbet*, C. Yang, Numerical simulations of kinetic models for chemotaxis, SIAM Journal on Scientific Computing, 2014, 36(3) , B348-B366. F. Filbet*, C. Yang, An inverse Lax-Wendroff method for boundary conditions of Boltzmann equations, Journal of Computational Physics, 2013, 245: 43-61. C. Besse, F. Deluzet, C. Negulescu, C. Yang*, Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations, Journal of Scientific Computing, 2013, 55: 231-254. F. Filbet*, C. Negulescu, C. Yang, Numerical Study of a Nonlinear Heat Equation for Plasma Physics, International Journal of Computer Mathematics, 2012, 89(8): 1060-1082.

推荐链接
down
wechat
bug