当前位置: X-MOL首页全球导师 国内导师 › 李君一

个人简介

李君一,哈尔滨工业大学(深圳)计算机学院副教授,博士生导师。2002年获北京大学学士学位,2007年获美国罗格斯新泽西州立大学硕士学位,2011年获美国罗格斯新泽西州立大学博士学位。研究方向为生物信息学以及计算生物学的理论、算法和分析技术,尤其专注生物医学大数据的挖掘。研究基于全基因组、多组学的生物医学大数据,从大数据水平、系统层面来揭示特定生物学过程和重大疾病发生发展过程中的分子机制。在此方向发表了50多篇国际期刊和会议文章,主持参与了多项研究项目。 教育经历 2005/1–2011/1 美国罗格斯新泽西州立大学,生物物理学,博士 2007/1–2009/1 美国罗格斯新泽西州立大学,统计学,硕士 1998/9–2002/7 北京大学,物理学,学士 工作经历 2022/7 - 至今 哈尔滨工业大学(深圳),计算机科学与技术学院,副教授 2017/3–2022/7 哈尔滨工业大学(深圳),计算机科学与技术学院,助理教授,特聘副研究员 2013/9–2016/11 中国科学院上海生命科学研究院,系统生物学国家重点实验室,博士后 2011/5–2013/5 美国罗格斯新泽西州立大学,生态、进化及自然资源学系,博士后 2005/1–2011/1 美国罗格斯新泽西州立大学,物理和天文物理学系及BioMaps研究所,助研 科研项目 2021-2026 科技部国家重点研发计划项目,生物斑图形成基本原理与人工控制的合成生物学研究,子课题负责人 2020-2022 深圳市高等院校稳定支持计划面上项目,基于图神经网络的单细胞测序数据分析研究,主持 2020-2023 深圳市学科布局,大规模异构隐私图数据计算理论与分析方法研究,参与 2017-2020 国家自然科学基金面上项目,基于mRNA/miRNA表达谱的复合基因调控网络构建分析以识别胃的炎-癌转化关键分子模块,参与 2017-2020 科技部国家重点研发计划项目,青藏高原人类遗传资源样本库信息库建设,参与 2016-2018 科技部国家重点研发计划项目,基于多组学特征谱的肝癌分子分型研究,参与

研究领域

生物信息学,系统生物学,计算生物学,生物医学大数据挖掘

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Struct2GO: protein function prediction based on Graph pooling algorithm and AlphaFold2 structure information. Jiao P, Wang B, Wang X, Liu B, Wang Y, Li J. Bioinformatics. 2023 October, doi:10.1093/bioinformatics/btad637. ScCCL: Single-cell data clustering based on self-supervised contrastive learning. Du L, Han R, Liu B, Wang Y, Li J. IEEE/ACM Trans Comput Biol Bioinform. 2023 January; doi: 10.1109/TCBB.2023.3241129. SLGNN: Synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network. Zhu Y, Zhou Y, Liu Y, Wang X, Li J. Bioinformatics. 2023 January; doi:10.1093/bioinformatics/btad015. PSPGO: cross-species heterogeneous network propagation for protein function prediction. Wu K, Wang L, Liu B, Liu Y, Wang Y, Li J. IEEE/ACM Trans Comput Biol Bioinform. 2022 October; 10.1109/TCBB.2022.3215257. MEAHNE: miRNA–disease association prediction based on semantic information in a heterogeneous network. Huang C, Cen K, Zhang Y, Liu B, Wang Y, Li J. Life. 2022 October; 12, 1578. doi: 10.3390/life12101578. Correction of Out-of-focus Microscopic Images by Deep Learning. Jiang H, Liu W, Zhang C, Li J, Tang S, Juhas M, Zhang Y. Computational and Structural Biotechnology Journal. Accepted; 2022 April. MDGNN:Microbial drug prediction based on heterogeneous multi-attention graph neural network. Pi J, Jiao P, Zhang Y, Li J. Frontiers in Microbiology. 2022 Apr 7;13:819046. doi: 10.3389/fmicb.2022.819046. OTUCD: Unsupervised GCN-based Metagenomics Nonoverlapping Community Detection. Zhang Z, Jiao Q, Zhang Y, Liu B, Wang Y, Li J.Computational Biology and Chemistry. 2022 Mar 24;98:107670. doi: 10.1016/j.compbiolchem.2022.107670. Deep Learning for Microscopic Examination of Protozoan Parasites. Zhang C, Jiang H, Jiang HL, Xi H, Chen B, Liu Y, Juhas M, Li J, Zhang Y. Computational and Structural Biotechnology Journal. 2022 February;22:1036. doi.org/10.1016/j.csbj.2022.02.005. Prediction of the Disease Causal Genes Based on Heterogeneous Network and Multi-Feature Combination Method. Wang L, Wu M, Wu Y, Zhang X, Li S, He M, Zhang F, Wang Y, Li J. Computational Biology and Chemistry. 2022 February; 97:107639. doi: 10.1016/j.compbiolchem.2022.107639. SmileGNN: Drug–Drug Interaction Prediction Based on the SMILES and Graph Neural Network. Han X, Xie R, Li X, Li J. Life. 2022 February; 12(2), 319. doi: 10.3390/life12020319 Prot2GO: predicting GO annotations from protein sequences and interactions. Zhang X, Wang L, Liu H, Zhang X, Liu B,Wang Y, Li J. IEEE/ACM Trans Comput Biol Bioinform. 2021 December; doi: 10.1109/TCBB.2021.3139841. DRBin: Metagenomic binning based on deep representation learning. Mao G, Wu Y, Zhang Y, Wang X, Zhu Y, Liu B, Wang Y, Li J. Journal of Genetics and Genomics. 2021 December; doi: 10.1016/j.jgg.2021.12.005. HNetGO: protein function prediction via heterogeneous network transformer. Zhang X, Cai Y, Wang X, Wu K, Zhang F, Qiu S, Liu B, Wang Y, Hu Y, Li J. Briefings in Bioinformatics. Accepted; 2021 December. Deep learning driven drug discovery: tackling SARS-CoV-2. Zhang Y, Ye T, Xi H, Juhas M, Li J. Frontiers in Microbiology. 2021 October; 12:739684. doi: 10.3389/fmicb.2021.739684. Deepgmd: a Graph-neural-network-based method to detect gene regulator module. Ye X, Wu Y, Pi J, Li H, Liu B, Wang Y, Li J. IEEE/ACM Trans Comput Biol Bioinform. 2021 Sept; doi: 10.1109/TCBB.2021.3114281. Mixed-protocol multi-party computation framework towards complex computation tasks with malicious security. Wu Y, Wang X, Susilo W, Yang G, Jiang L, Li J, Liu X. Computer Standards & Interfaces. 2021 August; 80:103570. doi: 10.1016/j.csi.2021.103570. PanSVR: pan-genome augmented short read realignment for sensitive detection of structural variations. Li G, Jiang T, Li J and Wang Y. Frontiers in Genetics. 2021 August; 12:1486(2021). doi:10.3389/fgene.2021.731515 IIMLP: Integrated Information-entropy-based Method for LncRNA Prediction. Li J, Li H, Ye X, Zhang L, Xu Q, Ping Y, Jing X, Jiang W, Liao Q, Liu B and Wang Y. BMC Bioinformatics. 2021 May; 22:243(2021). doi:10.1186/s12859-020-03884-w Factor Graph-Aggregated Heterogeneous Network Embedding for Disease-Gene Association Prediction. He M, Huang C, Liu B, Wang Y and Li J. BMC Bioinformatics. 2021 Mar; 22:165 (2021). doi: 10.1186/s12859-021-04099-3 Fast and accurate classification of meta-genomics long reads with deSAMBA. Li G, Liu Y, Liu B, Li J, Hu Y and Wang Y. Frontiers in Cell and Developmental Biology. 2021 April; doi:10.3389/fcell.2021.643645 Genome assembly and transcriptome analysis provide insights into the anti-schistosome mechanism of Microtus fortis. Li H, Wang Z, Chai S, Bai X, Ding G, Li Y, Li J, Xiao Q, Miao B, Lin W, Feng J, Huang M, Gao C, Li B, Hu W, Lin J, Fu Z, Xie J, Li Y. Journal of Genetics and Genomics. 2021 Feb. doi: 10.1016/j.jgg.2020.11.009. PmDNE: Prediction of miRNA-disease association based on network embedding and network similarity analysis. Li J, Liu Y, Zhang Z, Liu B and Wang Y. Biomed Res Int. vol. 2020, 6248686, 9 pages, 2020 Dec 07. doi:10.1155/2020/6248686 ScGSLC: An Unsupervised Graph Similarity Learning Framework for Single-cell RNA-seq Data Clustering. Li J, Jiang W, Han H, Liu J, Liu B and Wang Y. Computational Biology and Chemistry. 2020 Nov 18. doi:10.1016/j.compbiolchem.2020.107415. Pan-Cancer Classification based on Self-Normalizing Neural Networks and Feature Selection. Li J, Xu Q, Wu M, Huang T, Wang Y. Front. Bioeng. Biotechnol. 2020 Aug 4; 8:766. doi: 10.3389/fbioe.2020.00766 Long-read-based human genomic structural variation detection with cuteSV. Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, Liu Y, Liu B and Wang Y. Genome Biol. 2020 Aug; 21, 189. doi: 10.1186/s13059-020-02107-y Prognostic prediction of carcinoma by a differential-regulatory-network-embedded deep neural network. Li J, Ping Y, Li H, Li HN, Liu Y, Liu B, Wang Y. Computational Biology and Chemistry. 2020 Jun 24; 88:107317.doi: 10.1016/j.compbiolchem.2020.107317. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. Liu B, Liu Y, Li J, Guo H, Zang T, Wang Y. Genome Biol. 2019 Dec; 20(1):274. doi: 10.1186/s13059-019-1895-9 rMETL: sensitive mobile element insertion detection with long read realignment. Jiang T, Liu B, Li J, Wang Y. Bioinformatics. 2019 Sep 15;35(18):3484-3486. doi: 10.1093/bioinformatics/btz106. Integrated entropy-based approach for analyzing exons and introns in DNA sequences. Li J, Zhang L, Li H, Ping Y, Xu Q, Wang R, Tan R, Wang Z, Liu B, Wang Y. BMC Bioinformatics. 2019 Jun 10;20(Suppl 8):283. doi: 10.1186/s12859-019-2772-y. deGSM: memory scalable construction of large scale de Bruijn Graph. Guo H, Fu Y, Gao Y, Li J, Wang Y, Liu B. IEEE/ACM Trans Comput Biol Bioinform. 2019 Apr 30. doi: 10.1109/TCBB.2019.2913932. BdBG: a bucket-based method for compressing genome sequencing data with dynamic de Bruijn graphs. Wang R, Li J, Bai Y, Zang T, Wang Y. PeerJ. 2018 Oct 19;6:e5611. doi: 10.7717/peerj.5611. eCollection 2018. rMFilter: acceleration of long read-based structure variation calling by chimeric read filtering. Liu B, Jiang T, Yiu SM, Li J, Wang Y. Bioinformatics. 2017 Sep 1;33(17):2750-2752. doi: 10.1093/bioinformatics/btx279. Differential regulation analysis reveals dysfunctional regulatory mechanism involving transcription factors and microRNAs in gastric carcinogenesis. Li Q, Li J, Dai W, Li YX, Li YY. Artif Intell Med. 2017 Mar;77:12-22. doi: 10.1016/j.artmed.2017.02.006. Epub 2017 Mar 1. The Safety of Ovarian Preservation in Stage I Endometrial Endometrioid Adenocarcinoma Based on Propensity Score Matching. Hou T, Sun Y, Li J, Liu C, Wang Z, Li Y, Lu Y. Comb Chem High Throughput Screen. 2017;20(7):647-655. doi: 10.2174/1386207320666170417145856. Integrated Differential Regulatory Analysis Reveals a Novel Prognostic 36-Gene Signature for Gastric Cancer in Asian Population. Li J, Wu S, Yang L, Li YX, Liu BY, Li YY. Comb Chem High Throughput Screen. 2017;20(2):174-181. doi: 10.2174/1386207320666170117121543. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research. Li J, Li YX, Li YY. Biomed Res Int. 2016;2016:4241293. doi: 10.1155/2016/4241293. Epub 2016 Aug 11. A novel integrated gene coexpression analysis approach reveals a prognostic three-transcription-factor signature for glioma molecular subtypes. Wu S, Li J, Cao M, Yang J, Li YX, Li YY. BMC Syst Biol. 2016 Aug 26;10 Suppl 3:71. doi: 10.1186/s12918-016-0315-y. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Wang Z, Zhang J, Li H, Li J, Niimi M, Ding G, Chen H, Xu J, Zhang H, Xu Z, et al., Chen YE, Li Y. Sci Rep. 2016 Jun 1;6:26942. doi: 10.1038/srep26942. Integrated analysis of transcriptome in cancer patient-derived xenografts. Li H, Zhu Y, Tang X, Li J, Li Y, Zhong Z, Ding G, Li Y. PLoS One. 2015 May 7;10(5):e0124780. doi: 10.1371/journal.pone.0124780. eCollection 2015. Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa. Gross J, Wajid S, Price DC, Zelzion E, Li J, Chan CX, Bhattacharya D. PLoS One. 2013 Jul 3;8(7):e67669. doi: 10.1371/journal.pone.0067669. Print 2013. 会议论文及发表演说 NIEE: Modeling Edge Embeddings for Drug-Disease Association Prediction via Neighborhood Interactions. Jiang Y, Zhou J, Zhang Y, Wu Y, Wang X and Li J. ICIC 2023 : International Conference On Intelligent Computing, Zhengzhou, China, 2023.8 NSAP: A neighborhood subgraph aggregation method for drug-disease association prediction. Jiao Q, Jiang Y, Zhang Y, Wang Y and Li J. ICIC 2022 : International Conference On Intelligent Computing, on line, 2022.8 ScSSC: semi-supervised single cell clustering based on 2D embedding. Shi N, Du L, Liu B, Wang Y and Li J. ICIC 2021 : International Conference On Intelligent Computing, Shenzhen, on line, 2021.8 GONET: A Deep Network to Annotate Proteins via Recurrent Convolution Networks. Li J, Wang L, Zhang X, Liu B and Wang Y. BIBM 2020: International Conference on Bioinformatics & Biomedicine, 2020.12 HGAlinker: drug-disease association prediction based on attention mechanism of heterogeneous graph. Jing X, Jiang W, Zhang Z, Wang Y and Li J. ICIC 2020 : International Conference On Intelligent Computing, on line, 2020.10 Prediction of human lncRNAs based on integrated information entropy features. Li J, Li H, Zhang L, Xu Q, Ping Y, Jing X, Jiang W, Liu B, Wang Y. ICIC 2019 : International Conference On Intelligent Computing, Nanchang, China, 2019.8 Prognostic prediction of carcinoma by a differential-regulatory-network-embedded deep neural network. Li J, Ping Y, Li H, Xu Q, Wang L, Liu Y, Liu B, Wang Y. IDMB 2019: International Conference on Data Science in Medicine and Bioinformatics, 2019.6 DeGSM: memory scalable construction of large scale de Bruijn graph. Hongzhe Guo H, Fu Y, Gao Y, Li J, Wang Y, Liu B. The 17th Asia Pacific Bioinformatics Conference, 2019.1 DeepDNA: a hybrid convolutional and recurrent neural network for compressing human mitochondrial genomes. Wang R, Bai Y, Chu Y, Wang Z, Wang Y, Sun M, Li J, Zang T, Wang Y. BIBM 2018: International Conference on Bioinformatics & Biomedicine, 2018.12 Integrated entropy-based approach for analyzing exons and introns in DNA sequences. Li J, Zhang L, Li H, Ping Y, Xu Q, Wang R, Tan R, Wang Z, Liu B, Wang Y. IDMB 2018: International Conference on Data Science in Medicine and Bioinformatics, 2018.6 Integrated gene co-expression analysis approach reveals a prognostic three-transcription-factor signature for glioma molecular subtypes. Wu S, Li J, Cao M, Yang J, Li YX, Li YY. ICIBM 2015: International Conference on Intelligent Biology and Medicine,Indianapolis,US,2015.11.

推荐链接
down
wechat
bug