个人简介
现为哈尔滨工业大学(深圳)教授、博士生导师。主要研究方向为计算摄像、计算机视觉、人工智能;为2016、2019年度国家科技进步二等奖获得者(分别排序4,3),2019年国家优秀青年科学基金获得者,广东省特支计划科技创新领军人才,深圳高层次人才;已获得省部级科技一等奖两项,主持包括国家自然科学基金在内的国家级项目三项、省市级项目10余项。出版学术专著两部,获50余项国家/美国发明专利;发表SCI/EI检索论文100余篇,获国际会议论文奖2项。所提深度信息重建方法在由美国自然科学基金委、微软研究院等组织的Middleburry v2双目立体匹配公开测试平台排名第一,是中国计算机学会、中国人工智能学会、中国电子学会、IEEE、SPIE和美国光学学会OSA等多个国内外知名学会会员。
教育经历
2000.9-2004.7 英语 哈尔滨工业大学 本科
2004.09-2006.07 计算机 哈尔滨工业大学 硕士
2006.09-2010.07 计算机 哈尔滨工业大学 博士
工作经历
2010.09-2012.09 博士后 清华大学
2012.10-2014.10 讲师 清华大学
2014.11-2020.12 副教授 清华大学
2016.12-2017.12 访问学者 加州伯克利大学
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
期刊论文
Jingfen Xie, Jian Zhang, Yongbing Zhang, Xiangyang Ji, “PUERT: Probabilistic Under-sampling and Explicable Reconstruction Network for CS-MRI,” accepted by IEEE Journal of Selected Topics in Signal Processing 2022.
Jian Zhang, Zhenyu Zhang, Jingfen Xie, Yongbing Zhang, “High-Throughput Deep Unfolding Network for Compressive Sensing MRI,” accepted by IEEE Journal of Selected Topics in Signal Processing 2022.
Jun Liao, Xu Chen, Ge Ding, Pei Dong, Hu Ye, Han Wang, Yongbing Zhang, and Jianhua Yao, “Deep learning-based single-shot autofocus method for digital microscopy,” Biomed. Opt. Express, vol. 13, no.1, pp. 314-327, 2022.
Bowen Li, Shiyu Tan, Jiuyang Dong, Xiaocong Lian, Yongbing Zhang, Xiangyang Ji, Ashok Veeraraghavan, “3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning,” Biomed. Opt. Express, vol. 13, no.1, pp. 284-299, 2022.
Yue Huang, Shaowei Jiang, Ruihai Wang, Pengming Song, Jian Zhang, Guoan Zheng, Xiangyang Ji, and Yongbing Zhang, “Ptychography-based high-throughput lensless on-chip microscopy via incremental proximal algorithms,” accepted by Optics Express 2021, vol. 29, no.23, pp.37892-37906.
Kaifa Xin, Shaowei Jiang, Xu Chen, Yonghong He, Jian Zhang, Hongpeng Wang, Honghai Liu, Qin Peng, Yongbing Zhang, and Xiangyang Ji, Accelerated Low-cost whole slide imaging system with single-shot autofocusing based on color multiplexed illumination and deep learning, Biomed. Opt. Express, vol. 12, no.9, pp.5644-5657, 2021.
会议论文
Zhuchen Shao, Yifeng Wang, Yang Chen, Hao Bian, Shaohui Liu, Haoqian Wang, Yongbing Zhang, " LNPL-MIL: Learning from Noisy Pseudo Labels for Promoting Multiple Instance Learning in Whole Slide Image," ICCV 2023
Yiyang Lin, Yifeng Wang, Yang Chen, Zirui Zhu, Zijie Fang, Miaorun Lin, and Yongbing Zhang, "Unpaired H&E to PR Stain Transfer with Self-Supervised Auxiliary Segmentation," Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI) 2023
Zexin Li, Yiyang Lin, Yifeng Wang, Zijie Fang, Hao Bian, Runze Hu, Xiu Li, and Yongbing Zhang, “ST-MKSC: The FF-FFPE Stain Transfer based on Multiple Key Structure Constraint,” IEEE International Symposium on Biomedical Imaging (ISBI) 2023.
Jiale Zhang, Yulun Zhang, Jinjin Gu, Yongbing Zhang, Linghe Kong, Xin Yuan, “Accurate Image Restoration with Attention Retractable Transformer,” Accepted by ICLR 2023 (入选亮点论文)
Zijie Fang, Yang Chen, Yifeng Wang, Zhi Wang, Xiangyang Ji, Yongbing Zhang, “Weakly-Supervised Semantic Segmentation for Histopathology Images Based on Dataset Synthesis and Feature Consistency Constraint,” Accepted by AAAI 2023
Zhuchen Shao, Yang Chen, Hao Bian, Jian Zhang, Guojun Liu, Yongbing Zhang, “HVTSurv: Hierarchical Vision Transformer for Patient-level Survival Prediction from Whole Slide Image,” Accepted by AAAI 2023
Zheng Chen, Yulun Zhang, Jinjin Gu, Yongbing Zhang, Linghe Kong, Xin Yuan, “Cross Aggregation Transformer for Image Restoration,” Accepted by NeurIPS 2022 spotlight
Bowei Zeng, Yiyang Lin, Yifeng Wang, Yang Chen, Jiuyang Dong, Xi Li, and Yongbing Zhang, “Semi-Supervised PR Virtual Staining for Breast Histopathological Images,” Accepted by MICCAI, Student Travel Award, 2022.
Hao Bian, Zhucen Shao, Yang Chen, Yifeng Wang, Haoqian Wang, Jian Zhang, and Yongbing Zhang, “Multiple Instance Learning with Mixed Supervision in Gleason Grading,” Accepted by MICCAI 2022.
Yangen Zhan, Hao Bian, Yang Chen, Xiu Li, Yongbing Zhang, “Breast tumor image classification in bright challenge via multiple instance learning and deep transformers,” Accepted by ISBI 2022.