当前位置: X-MOL首页全球导师 国内导师 › 徐增林

个人简介

徐增林,哈尔滨工业大学教授、博士生导师,国家青年特聘专家,IEEE Senior Member,国际神经网络协会(International Neural Network Society)理事(Board of Govornors), 教育副主任(VIce President for Education)。主要研究兴趣为机器学习及其在社会网络分析、计算机视觉、自然语言处理、健康信息学、网络空间安全等方面的应用。他在包括NIPS, ICML, IJCAI, AAAI, IEEE TPAMI, IEEE TNNLS在内的著名会议和刊物发表论文100多篇,发表专著1部,并于2012年在多伦多召开的国际人工智能大会(AAAI)和2017年11月在广州召开的国际神经信息处理会议(ICONIP)上做教学报告。徐增林教授是JMLR,IEEE TPAMI等机器学习与人工智能领域主要期刊的审稿人,国家自然基金委、荷兰基金委、科技部精准医学重点研发计划、政府间合作计划和香港教育资助局的基金评审人;多次担任人工智能领域的主要国际会议如AAAI/IJCAI等会议的程序委员会成员或高级委员。他是2019年PRICAI迁移学习研讨会,2018年ICDM对抗学习研讨会,2010年神经信息处理大会(NIPS)分会—社会计算中的机器学习研讨会,2013年和2014年IEEE 大数据大会分会—可扩展的机器学习研讨会的组织委员会主席,曾担任亚洲机器学习会议(ACML)2015年的Workshop Co-chair。徐增林教授是2015年人工智能领域顶级国际会议AAAI的最佳学生论文奖提名奖的指导老师之一,2016年亚洲机器学习会议(ACML)最佳学生论文奖亚军指导老师,2016年9月获由亚太神经网络协会(APNNS)青年学者奖。 徐增林教授于2009年毕业于香港中文大学计算机科学与工程专业,师从IEEE Fellow 香港中文大学计算机科学与工程系系主任Irwin King教授,和ACM Fellow、IEEE Fellow、美国科学促进会AAAS Fellow Michael R. Lyu教授。他先后在美国密西根州立大学、德国马克思普朗克信息研究所及萨尔大学、美国普渡大学、中国电子科技大学等著名研究机构访问和从事学术研究工作。

研究领域

致力于解决涉及现代大数据分析的关键建模和计算的挑战,实现复杂系统在自然语言处理,计算机视觉,社会计算,网络空间安全,生物信息学和生物医学应用等领域的研究。为此研究由各种应用驱动的稀疏、关系、动态、深度学习模型,并为这些模型开发精确、高效和可扩展的算法。 机器学习理论与方法 联邦学习理论/联邦大模型 贝叶斯深度学习与生成模型 多源异构数据学习与张量网络 图学习与图神经网络 量子机器学习 机器学习应用 (AI for Science) 医疗大数据分析 网络数据分析 时间序列分析 法律人工智能

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Shudong Huang, Zenglin Xu, Ivor W Tsang, Zhao Kang. Auto-weighted multi-view co-clustering with bipartitegraphs. Information Sciences, 512, 18-30, 2020. Shudong Huang, Zenglin Xu, Zhao Kang, Yazhou Ren. Regularized Nonnegative Matrix Factorization withAdaptive Local Structure Learning. Neurocomputing, 2020. Yazhou Ren, Shudong Huang, Peng Zhao, Minghao Han, Zenglin Xu. Self-paced and Auto-weighted Multi-viewClustering. Neurocomputing, 2020. Liangjiang Wen, Xueyang Zhang, Haoli Bai, Zenglin Xu. Structured Pruning of Recurrent Neural Networksthrough Neuron Selection. Neural Networks, 2019. Zhao Kang, Xinjia Zhao, Chong Peng, Hongyuan Zhu, Joey Tianyi Zhou, Xi Peng, Wenyu Chen, Zenglin Xu.Partition level multiview subspace clustering. Neural Networks, 2019. Zhao Kang, Guoxin Shi, Shudong Huang, Wenyu Chen, Xiaorong Pu, Joey Tianyi Zhou, Zenglin Xu. Multi-graphfusion for multi-view spectral clustering. Knowledge-Based Systems, 105102, 2019. Dan Ma, Bin Liu, Zhao Kang, Jiayu Zhou, Jianke Zhu, Zenglin Xu. Two birds with one stone: Transformingand generating facial images with iterative GAN. Neurocomputing, 2019. Shudong Huang, Zhao Kang, Zenglin Xu. Auto-weighted Multi-view Clustering via Deep Matrix DecompositionPattern Recognition, 107015, 2019. Yazhou Ren, Uday Kamath, Carlotta Domeniconi, Zenglin Xu. Parallel boosted clustering Neurocomputing,351, 87-100, 2019. Yazhou Ren, Xiaofan Que, Dezhong Yao, Zenglin Xu. Self-paced multi-task clustering Neurocomputing, 350,212-220, 2019. Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven C. H. Hoi, Zenglin Xu. Semi-supervised deep embeddedclustering. Neurocomputing, 325, 121-130, 2019. Shudong Huang, Zhao Kang, Ivor W Tsang, Zenglin Xu. Auto-weighted multi-view clustering via kernelizedgraph learning Pattern Recognition, 88, 174-184, 2019. Zhao Kang, Haiqi Pan, Steven CH Hoi, Zenglin Xu. Robust Graph Learning from Noisy Data IEEE transactionson cybernetics, 2019. Bin Liu, Lirong He, Yingming Li, Shandian Zhe, Zenglin Xu. NeuralCP: Bayesian Multiway Data Analysis withNeural Tensor Decomposition Cognitive Computation, 10(6), 1051-1061, 2018. Liyang Hao, Siqi Liang, Jinmian Ye, and Zenglin Xu. TensorD: A tensor decomposition library in TensorFlowNeurocomputing, 318, 196-200, 2018. Yazhou Ren, Kongrong Hu, Xinyi Dai, Lili Pan, Steven CH Hoi, and Zenglin Xu: Semi-supervised Deep Embed-ded Clustering Neurocomputing, 2018. Zhao Kang, Liangjian Wen, Wenyu Chen and Zenglin Xu. Low-rank kernel learning for graph-based clusteringKnowledge-Based Systems, 2018. Zenglin Xu, Bin Liu, Shandian Zhe, Haoli Bai, Zihan Wang and Jennifer Neville. Variational Random FunctionModel for Network Modeling IEEE transactions on neural networks and learning systems, 99, 1-7, 2018. Shudong Huang, Peng Zhao, Yazhou Ren, Tianrui Li, and Zenglin Xu. Self-paced and soft-weighted nonnegativematrix factorization for data representation, Knowledge-based System, 2018. Shudong Huang, Yazhou Ren, and Zenglin Xu. Robust Multi-View Data Clustering with Multi-View Capped-Norm K-means, Neurocomputing, 2018. Shudong Huang, Zhao Kang, and Zenglin Xu. Self-weighted Multi-View Clustering with Soft Capped Norm,Knowledge-Based Systems, 2018. Lirong He, Bin Liu, Guangxi Li, Yongpan Sheng, Yafang Wang, and Zenglin Xu. Knowledge Base Completionby Variational Bayesian Neural Tensor Decomposition. Cognitive Computation, 2018 Bin Liu, Yingming Li, and Zenglin Xu, Manifold regularized matrix completion for multi-label learning withADMM. Neural Networks, 2018. Shudong Huang, Zenglin Xu, and Jiancheng Lv, Adaptive Local Structure Learning for Document Co-clustering,Knowledge-Based Systems, 2018 Shudong Huang, Hongjun Wang, Tao Li, Tianrui Li, and Zenglin Xu. Robust Graph Regularized NonnegativeMatrix Factorization for Clustering, Data Mining and Knowledge Discovery, 32(2): 483-503 (2018). Zenglin Xu, Shandian Zhe,Yuan(Alan) Qi and Peng Yu. Association Discovery and Diagnosis of Alzheimer’sDisease with Bayesian Multiview Learning. Journal of Artificial Intelligence Research, 56 (2016). Haiqin Yang, Zenglin Xu, Irwin King, and Michael R. Lyu. Budget constrained non-monotonic feature selection. Neural Networks, 71, 214-224, 2015 Zenglin Xu, Feng Yan, and Yuan (Alan) Qi. Bayesian nonparametric models for multiway data analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.2, pp.475–487, 2015. Haiqin Yang, Zenglin Xu, Jieping Ye, Irwin King, and Michael R. Lyu. Efficient sparse generalized multiple kernel learning. IEEE Transactions on Neural Networks, 22(3):433–446, 2011. Zenglin Xu, Irwin King, Michael R. Lyu, and Rong Jin. Discriminative semi-supervised feature selection via manifold regularization. IEEE Transactions on Neural Networks, 21(7):1033–1047, 2010. Zenglin Xu, Kaizhu Huang, Jianke Zhu, Irwin King, and Michael R. Lyu. A novel kernel-based maximum a posteriori classification method. Neural Networks, 22(7):977–987, 2009. Conference Papers (国际会议) Junyu Lu, Chenbin Zhang, Zeying Xie, Guang Ling, Tom Chao Zhou, Zenglin Xu: Constructing InterpretiveSpatio-Temporal Features for Multi-Turn Responses Selection Proceedings of the 57th Annual Meeting of theAssociation for Computational Linguistics(ACL), 2019. Yongpan Sheng, Zenglin Xu: Coherence and Salience-Based Multi-Document Relationship Mining Asia-PacificWeb (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and BigData, 2019. Ao Liu, Lizhen Qu, Junyu Lu, Chenbin Zhang, Zenglin Xu: Machine Reading Comprehension: Matching andOrders Proceedings of the 28th ACM International Conference on Information and Knowledge Management,2019. Zhao Kang, Zipeng Guo, Shudong Huang, Siying Wang, Wenyu Chen, Yuanzhang Su, Zenglin Xu: MultiplePartitions Aligned Clustering Proceedings of the 28th International Joint Conference on Artificial Intelligence(IJCAI), 2019. Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, Ping Wang: Adversarial noise layer: Regularize neuralnetwork by adding noise IEEE International Conference on Image Processing (ICIP), 2019. Shudong Huang, Wei Shi, Zenglin Xu, Ivor W Tsang: Iterative Orthogonal Federated Multi-view Learning IJCAIWorkshop on Federated Machine Learning, 2019. Jian Liang, Yuren Cao, Chenbin Zhang, Shiyu Chang, Kun Bai, Zenglin Xu: Additive Adversarial Learning forUnbiased Authentication, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2019). Maolin Wang, Chenbin Zhang, Yu Pan, Jing Xu and Zenglin Xu.: Tensor Ring Restricted Boltzmann Machines,(IJCNN, 2019). Zhao Kang, Yiwei Lu, Yuanzhang Su, Changsheng Li, and Zenglin Xu: Similarity Learning via Kernel PreservingEmbedding, Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019). (AR: 1150/7095=16.2%) Yu Pan, Jing Xu, Jinmian Ye, Maolin Wang, Fei Wang, Kun Bai, and Zenglin Xu: Compressing RecurrentNeural Networks with Tensor Ring Decomposition for Action Recognization. Proceedings of the 33rd AAAIConference on Artificial Intelligence (AAAI 2019). (AR: 1150/7095= 16.2%) Shangchen Zhou, Shuai Yuan, Zhizhuo Zhang, and Zenglin Xu: Association Study of Alzheimer’s Disease withTree-Guided Sparse Canonical Correlation Analysis. International Conference on Neural Information Process-ing. 2018. Haoli Bai, Zhuangbin Chen, Michael R. Lyu, Irwin King, and Zenglin Xu: Neural Relational Topic Models forScientific Article Analysis. CIKM 2018: 27-36 Yazhou Ren, Xiaohui Hu, Ke Shi, Guoxian Yu, Dezhong Yao, and Zenglin Xu. Semi-supervised DenPeakClustering with Pairwise Constraints. Pacific Rim International Conference on Artificial Intelligence, 2018 Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu: Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition. CVPR, 2018. Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska: Superneurons: dynamic GPU memory management for training deep neural networks. PPOPP 2018: 41-53 Hao Liu, Lirong He, Haoli Bai, Bo Dai, Kun Bai, Zenglin Xu: Structured Inference for Recurrent Hidden Semi-markov Model. IJCAI 2018: 2447-2453 Zhao Kang, Xiao Lu, Jinfeng Yi, Zenglin Xu: Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification, IJCAI 2018: 2312-2318. Zhao Kang, Chong Peng, Qiang Cheng, Zenglin Xu: Unified Spectral Clustering With Optimal Graph. AAAI 2018: 3366-3373 Yingming Li, Zenglin Xu, Zhongfei Zhang: Learning With Incomplete Labels. AAAI 2018: 3588-3595 Xiaofan Que, Yazhou Ren, Jiayu Zhou, Zenglin Xu: Regularized Multi-source Matrix Factorization for Diagnosis of Alzheimer’s Disease. ICONIP (1) 2017: 463-473 Yazhou Ren, Peng Zhao, Yongpan Sheng, Dezhong Yao, Zenglin Xu: Robust Softmax Regression for Multi-class Classification with Self-Paced Learning. IJCAI 2017: 2641-2647 Guangxi Li, Zenglin Xu, Linnan Wang, Jinmian Ye, Irwin King, Michael R. Lyu: Simple and efficient parallelization for probabilistic temporal tensor factorization. IJCNN 2017: 1-8 Shudong Huang, Zenglin Xu, Fei Wang: Nonnegative matrix factorization with adaptive neighbors. IJCNN 2017: 486-493 Liqiang Wang, Yafang Wang, Bin Liu, Lirong He, Shijun Liu, Gerard de Melo, Zenglin Xu: Link prediction by exploiting network formation games in exchangeable graphs. IJCNN 2017: 619-626 Yazhou Ren, Peng Zhao, Zenglin Xu, Dezhong Yao: Balanced self-paced learning with feature corruption. IJCNN 2017: 2064-2071 Bin Liu, Zenglin Xu, Bo Dai, Haoli Bai, Xianghong Fang, Yazhou Ren, Shandian Zhe: Learning from semantically dependent multi-tasks. IJCNN 2017: 3498-3505 Yiyang Zhao, Linnan Wang, Wei Wu, George Bosilca, Richard W. Vuduc, Jinmian Ye, Wenqi Tang, Zenglin Xu: Efficient Communications in Training Large Scale Neural Networks. ACM Multimedia (Thematic Workshops) 2017: 110-116 Yingming Li, Ming Yang, Zenglin Xu, Zhongfei (Mark) Zhang: Learning with Feature Network and Label Network Simultaneously. In AAAI’17: Proceedings of the 26th AAAI Conference on Artificial Intelligence. 1410-1416 Yingming Li, Ming Yang, Zenglin Xu, and Zhongfei (Mark) Zhang Multi-view Learning with Limited and Noisy Tagging. In IJCAI’16: Proceedings of the 25th International Joint Conference on Artificial Intelligence. Shandian Zhe, Yuan Qi, Youngja Park, Zenglin Xu, Ian Molloy, and Suresh Chari DinTucker: Scaling upGaussian Process Models on Large Multidimensional Arrays . In AAAI’16: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Yingming Li, Ming Yang, Zenglin Xu, and Zhongfei (Mark) Zhang Learning with Marginalized Corrupted Features and Labels Together. In AAAI’16: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi and Yongja Park Scalable Nonparametric Multiway Data Anal-ysis. In AISTATS’15: Proceedings of the 18th Proceedings of International Conference on Artificial Intelligence and Statistics. 2015. (AR: 127/442= 28.7%) Shandian Zhe, Zenglin Xu, and Yuan Qi. Sparse Bayesian Multiview Learning for Simultaneous Association Discovery and Diagnosis of Alzheimer’s Disease. In AAAI’15: Proceedings of the 25th AAAI Conference on Artificial Intelligence. Outstanding student paper honorable mention, 2015. Zenglin Xu, Rong Jin, Bin Shen and Shenghuo Zhu. Nystrom Approximation for Sparse Kernel Methods: Theoretical Analysis and Empirical Evaluation In AAAI’15: Proceedings of the 25th AAAI Conference on Artificial Intelligence. 2015. Christopher Gates, Ninghui Li, Zenglin Xu, Suresh N. Chari, Ian Molloy, and Youngja Park. Detecting Insider Information Theft Using Features from File Access Logs. European Symposium on Research in Computer Security (ESORICS), 2014. Bin Shen, Zenglin Xu and Jan P. Allebach. Kernel Tapering: a Simple and Effective Approach to Sparse Kernels for Image Processing. International Conference on Image Processing, 2014. Shandian Zhe, Zenglin Xu and Yuan (Alan) Qi. Joint association discovery and diagnosis of Alzheimer’s disease by supervised heterogeneous multiview learning. Pacific Symposium on Biocomputing, 2014. Zenglin Xu, Feng Yan, and Yuan (Alan) Qi. Infinite tucker decomposition: Nonparametric bayesian models for multiway data analysis. In ICML ’12: Proceedings of the 29th International Conference on Machine Learning, pages 1023–1030, New York, NY, USA, 2012. Omnipress. (AR: 243/890 = 27.3%) Feng Yan, Zenglin Xu, and Yuan (Alan) Qi. Sparse matrix-variate gaussian process blockmodels for network modeling. In UAI ’11: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pages 745–752. AUAI Press, 2011. (AR: 96/285=33.6%) Zenglin Xu, Feng Yan, and Yuan (Alan) Qi. Sparse matrix-variate t process blockmodels. In AAAI ’11: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press, 2011. (AR: 242/975=24.8%) Zenglin Xu, Rong Jin, Shenghuo Zhu, Michael R. Lyu, and Irwin King. Smooth optimization for effective multiplekernel learning. In AAAI ’10: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI Press, 2010. (AR: 264/982=26.9%) Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and efficient multiple kernel learning by group lasso. In ICML ’10: Proceedings of the 27th International Conference on Machine Learning, pages 1175–1182. Omnipress, 2010. (AR: 152/594=25.6%) Haiqin Yang, Zenglin Xu, Irwin King, and Michael R. Lyu. Online learning for group lasso. In ICML ’10: Proceedings of the 27th International Conference on Machine Learning, pages 1191–1198. Omnipress, 2010(AR: 152/594=25.6%) Kaizhu Huang, Rong Jin, Zenglin Xu, and Cheng-Lin Liu. Robust metric learning by smooth optimization. In UAI ’10: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pages 244–251. AUAI Press, 2010. (AR: 88/260=33.8%) Zenglin Xu, Rong Jin, Michael R. Lyu, and Irwin King. Discriminative semi-supervised feature selection via manifold regularization. In IJCAI ’09: Proceedings of the 21th International Joint Conference on Artificial Intelligence, pages 1303–1308, 2009. Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael Lyu, and Zhirong Yang. Adaptive regularization for transductive support vector machine. In Y. Bengio, L. Bottou, J. Lafferty, and C. Williams, editors, Advances inNeural Information Processing Systems 22 (NIPS), pages 2125–2133. 2009. (AR: 263/1105= 23.8%, Spotlight:87/1105 = 7.8%) Zhirong Yang, Irwin King, Zenglin Xu, and Errki Oja. Heavy-tailed symmetric stochastic neighbor embedding.In Y. Bengio, L. Bottou, J. Lafferty, and C. Williams, editors, Advances in Neural Information Processing Systems22 (NIPS), pages 2169–2177. 2009. (AR: 263/1105= 23.8%, Spotlight: 87/1105 = 7.8%) Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, and Irwin King. Non-monotonic feature selection. In ICML’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 1145–1152, New York,NY, USA, 2009. ACM. (160/640 = 25%) Kaizhu Huang, Zenglin Xu, Irwin King, Michael R. Lyu, and Colin Campbell. Supervised self-taught learning:Actively transferring knowledge from unlabeled data. In IJCNN ’09: International Joint Conference on NeuralNetworks, pages 1272–1277. IEEE, 2009. Zenglin Xu, Rong Jin, Irwin King, and Michael Lyu. An extended level method for efficient multiple kernellearning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural InformationProcessing Systems 21 (NIPS), pages 1825–1832. 2008. (AR: 250/1022 = 24%) Zenglin Xu, Rong Jin, Kaizhu Huang, Irwin King, and Michael R. Lyu. Semi-supervised text categorization byactive search. In CIKM ’08: Proceedings of the thirteenth ACM international conference on Information andknowledge management, pages 1517–1518, New York, NY, USA, 2008. ACM Press. (AR: 256/772 = 33%) Kaizhu Huang, Zenglin Xu, Irwin King, and Michael R. Lyu. Semi-supervised learning from general unlabeleddata. In ICDM ’08: Proceedings of IEEE International Conference on Data Mining, pages 273–282, Los Alamitos,CA, USA, 2008. IEEE Computer Society. (AR: 70/724 = 9%) Jianke Zhu, Steven C. Hoi, Zenglin Xu, and Michael R. Lyu. An effective approach to 3d deformable surfacetracking. In ECCV ’08: Proceedings of the 10th European Conference on Computer Vision, pages 766–779,Berlin, Heidelberg, 2008. Springer-Verlag. Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, and Michael R. Lyu. Efficient convex relaxation for transductivesupport vector machine. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in NeuralInformation Processing Systems 20, pages 1641–1648. MIT Press, Cambridge, MA, 2007. (217/975 = 22%) Zenglin Xu, Irwin King, and Michael R. Lyu. Web page classification with heterogeneous data fusion. In WWW’07: Proceedings of the 16th International Conference on World Wide Web, pages 1171–1172, New York, NY,USA, 2007. ACM Press.

学术兼职

理事/副理事长(教育) 国际神经网络学会(INNS) 期刊编委 Neurocomputing Neural Networks 研讨会组织 2020: International Workshop on Tensor Network Representations in Machine Learning, in conjunction with IJCAI 2020 2018: Advances in Unsupervised Deep Learning, in conjunction with PRICAI 2018, Nanjing, China 2014: Scalable Machine learning in conjunction with IEEE Big Data 2014, Washington, DC, US 2014: Scalable Machine learning in conjunction with IEEE Big Data 2014, Washington, DC, US 2013: Scalable Machine learning in conjunction with IEEE Big Data 2013, Santa Clara, CA, US 2010: Machine learning for social computing in conjunction with NIPS 2010, Vancouver, BC, Canada 期刊评审 IEEE Transaction on Pattern Recognition and Machine Intelligence, Journal of Machine Learning Research, IEEE Transaction on Neural Network, IEEE Transaction on KnowledgeDiscovery and Engineering, IEEE Transaction on Cybernetics, ACM TIST, ACM TKDD, NeuroComputing, Neural Computing and Applications,Pattern Recognition, Knowledge-based Systems 国际会议程序委员会 2024: AAAI(Senior PC ), ICLR 2023: AAAI(Senior PC ), ACL (Area Chair), EMNLP (Area Chair), IJCAI (Senior PC), ICML, NeurIPS, CVPR, ICCV, WSDM, ICLR 2022: ICML, NeurIPS, CVPR, ECCV, ACL, EMNLP, ICLR, AAAI, IJCAI(Senior PC ) 2021: ICML, NeurIPS, CVPR, ICCV, ACL, ICLR, AAAI, IJCAI(Area Chair ) 2020: ICML, NeurIPS, CVPR, ECCV, ACL, MIDL, ICLR, AAAI, IJCAI(Senior PC) 2019: ICML, NeurIPS, CVPR, ICCV, ACL, IJCAI, CIKM, ICLR, AAAI(Senior PC) 2018: AAAI, IJCAI, ICLR, ICML, NIPS, ACML 2017: AAAI, IJCAI, NIPS, ICML 2016: AAAI, IJCAI, NIPS, ACML 2015: ICML, NIPS, AAAI, ACML 2014: NIPS, Web Intelligence 2013: NIPS, ACM CIKM, IJCAI, Web Intelligence, IJCNN, ICANN 2012: ICML, AAAI, AAAI AIWeb, ACM CIKM, ICPR, Web Intelligence 2011: NIPS, AAAI AIWeb, IJCAI, IJCNN, ICANN

推荐链接
down
wechat
bug