个人简介
宋智广,1986年9月出生于辽宁抚顺,“海外高层次人才引进计划青年项目”获得者,德国洪堡学者。现任国际SCI检索期刊International Journal of Aerospace Engineering编委、中国《固体力学学报》特邀青年编委以及《动力学与控制学报》青年编委。长期以航空航天领域中结构的关键力学问题为出发点,紧密围绕结构动力学、振动噪声和控制问题开展研究工作,在气动热弹性力学、结构振动控制以及非线性动力学等领域取得了若干重要的研究成果。在AIAA J.、J. Sound Vib.、Nonlinear Dyn.等航空航天和动力学与控制领域顶级期刊发表SCI论文48篇,论文被SCI他引700余次,并有5篇ESI高被引论文。引用专家包括Timoshenko奖(被称为力学的诺贝尔奖)获得者J.N. Reddy教授等。获得黑龙江省科学技术(自然科学类)一等奖1项(排名第2)。研究成果被国际著名科技机构“工程进展(Advances in Engineering)”网站遴选为关键文章,并进行了重点报道。指导博士研究生1名,硕士研究生6名(含1名留学生),其中1人获得2020年度研究生国家奖学金。
Zhiguang Song, Professor, Member of “Overseas High-Level Talents Plan” of China, graduated from the department of General Mechanics and Fundamentals of Mechanics of Harbin Institute of Technology with a Ph.D. degree. He was a Research Associate at City University of Hong Kong from December 2014 to June 2016, and a Humboldt Research Fellow at Technische Universität Darmstadt and Politecnico di Torino from August 2016 to March 2018. From September 2018 to the present, he is a professor of Harbin Engineering University. He is Editorial Board members of International Journal of Aerospace Engineering, Chinese Journal of Solid Mechanics and Journal of Dynamics and Control. His main research interests are Aerothermoelasticity, Structural Vibration and Control, Nonlinear Dynamics and so on.
教育经历
2011年09月-2014年10月,哈尔滨工业大学,一般力学与力学基础,工学博士;
2009年09月-2011年07月,哈尔滨工业大学,一般力学与力学基础,工学硕士;
2005年09月-2009年07月,哈尔滨理工大学,工程力学系,工学学士;
工作经历
2021年03月-至今,哈尔滨工程大学,航天与建筑工程学院,工程力学系副主任;
2018年09月-至今,哈尔滨工程大学,航天与建筑工程学院,教授/博导;
2016年08月-2018年03月,德国达姆施塔特工业大学/意大利都灵理工大学,机械工程系/航天与机械工程系,洪堡学者,合作教授:Peter Hagedorn、Erasmo Carrera;
2014年12月-2016年06月,香港城市大学,建筑学与土木工程学系,研究助理,合作教授:K.M. Liew。
承担项目
1. 国家自然科学基金青年基金,2019.01-2021.12,主持
2. 哈尔滨工程大学中央高校基本科研业务费专项基金,2019.01-2021.12,主持
3. 国家自然科学基金中-德合作项目,2018.01-2020.12,参加
学术交流
1. The 3rd International Conference on Fluid Dynamics and Aerodynamics, October, 25-26, 2018, Berlin, Germany. (Invited to be Organizing Committee Member) (You being an eminent personality with ample experience in these fields, your thoughts, opinions and decisions are of great value and I would like to put forth a proposal to have you as an Organizing Committee Member and we are confident that your contribution will give a splendid touch to the colloquium as the Speakers/delegates from all around the world will look forward to learn from your works)
2. The 14th International Conference on Dynamical Systems Theory and Applications, December, 2017, lodz, Poland; (Invited)
3. The 20th International Conference on Composite Structures, September, 2017, Paris, France;
4. The 4th International Conference on Dynamics, Vibration and Control, August, 2014, Shanghai, China;
5. 中国力学大会,2011年8月,哈尔滨;
6. 第十二届全国气动弹性学术交流会,2011年6月,承德;
7. 第九届全国动力学与控制学术会议,2012年5月,西安;
招生信息
欢迎如下相关专业的青年才俊攻读博士和硕士学位:
力学、机械、土木、物理、数学、飞行器设计、材料等专业
本科生授课课程
《理论力学》,本科生必修课,64学时;
研究生授课课程
《动力学与控制》,硕士研究生学位课,16学时;
《流固耦合力学》,硕士研究生选修课,32学时;
《结构振动与颤振控制》,博士研究生选修课,16学时;
专利成果
1. 一种增强航天飞行器用圆柱壳结构气动弹性稳定性的方法,发明专利,申请号:CN202010071447.3,排名第1;
2. 基于超高速下飞行器的梁结构提高气动弹性稳定性设计方法,发明专利,申请号:CN202010072905.5,排名第1;
3. 一种任意边界条件下复合材料层合板颤振及热屈曲特性的计算方法,发明专利,申请号:CN202010537202.5,排名第3;
4. 一种基于模态局域化理论的隔振梁系统,发明专利,申请号:CN201911341074.0,排名第2;
5. 一种多频段减振的新型周期金字塔点阵超材料梁结构,发明专利,申请号:CN202010544878.7,排名第3;
荣誉
1. “海外高层次人才引进计划青年项目”(中组部“青年QR”),2020年11月;
奖励
1. 黑龙江省科学技术(自然科学奖)一等奖,黑龙江省科技厅,2020年11月; (排名第2)
2. 德国洪堡学者奖学金,德国洪堡基金会,2015年7月;(国际学术奖励)
3. 哈尔滨工业大学第十九届优秀博士学位论文,哈尔滨工业大学学位委员会,2017年9月;
4. 黑龙江省优秀硕士学位论文,黑龙江省教育厅,2011年11月。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Y.Y. Chen, Z.G. Song*, F.M. Li. Generating mechanism of mode localization for the beams and its application in the passive vibration control. Journal of Sound and Vibration, 2020, 485: 115531.
[2] J.C. Wei, Z.G. Song*, F.M. Li. Superior aeroelastic behaviors of axially functional graded cylindrical shells in supersonic airflow, Journal of Fluids and Structures, 2020, 96: 103027.
[3] Y. Xue, J.Q. Li, F.M. Li, Z.G. Song. Flutter and Thermal Buckling Properties and Active Control of Functionally Graded Piezoelectric Material Plate in Supersonic Airflow. Acta Mechanica Solida Sinica, DOI: 10.1007/s10338-020-00159-y.
[4] Y.Y. Chai, F.M. Li, Z.G. Song. Nonlinear Flutter Suppression and Thermal Buckling Elimination for Composite Lattice Sandwich Panels. AIAA Journal, 2019, 57(11): 4863-4872.
[5] Y.Y. Chai, F.M. Li, Z.G. Song. Analysis on the Aeroelastic Stability of Open Cylindrical Shells in Subsonic Airflow Using the Theoretical and Two-way CFD/CSD Coupled Methods. International Journal of Acoustics and Vibration, 2019, 24(3): 408-417.
[6] Z.G. Song*, Y.Y. Chen, Z.Y. Li, J.C. Sha, F.M. Li. Axially functionally graded beams and panels in supersonic airflow and their excellent capability for passive flutter suppression. Aerospace Science and Technology, 2019, 92: 668-675.
[7] Y. Xue, J.Q. Li, F.M. Li, Z.G. Song. Active control of plates made of functionally graded piezoelectric material subjected to thermo-electro-mechanical loads, International Journal of Structural Stability and Dynamics, 2019, 19(9): 1950107.
[8] Y.Y. Chai, F.M. Li, Z.G. Song. Nonlinear vibrations, bifurcations and chaos of lattice sandwich composite panels on Winkler-Pasternak elastic foundations with thermal effects in supersonic airflow. Meccanica, 2019, 54(7): 919-944.
[9] Z.G. Song, T.Z. Yang, F.M. Li, E. Carrera, P. Hagedorn. A method of panel flutter suppression and elimination for aeroelastic structures in supersonic airflow. Journal of Vibration and Acoustics, 2018, 140(6): 064501.
[10] Y.Y. Chai, Z.G. Song*, F.M. Li*. Investigations on the aerothermoelastic properties of composite laminated cylindrical shells with elastic boundaries in supersonic airflow based on the Rayleigh-Ritz method. Aerospace Science and Technology, 2018, 82-83: 534-544.
[11] Y.Y. Chai, F.M. Li, Z.G. Song, Ch. Zhang. Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time-dependent boundary conditions in supersonic airflow. Journal of Intelligent Material Systems and Structures, 2018, 29(4): 653-668.
[12] Z.G. Song, F.M. Li, E. Carrera, P. Hagedorn. A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects. Journal of Sound and Vibration, 2018, 414: 218-232.
[13] Z.G. Song, X. He, K.M. Liew. Dynamic responses of aerothermoelastic functionally graded CNT reinforced composite panels in supersonic airflow subjected to low-velocity impact. Composites Part B: Engineering, 2018, 149: 99-109.
[14] L.W. Zhang, Z.G. Song*, K.M. Liew*. Modeling aerothermoelastic properties and active flutter control of nanocomposite cylindrical shells in supersonic airflow under thermal environments. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 416-433.
[15] L.W. Zhang, Z.G. Song*, P.Z. Qiao, K.M. Liew*. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 889-903.
[16] Y.Y. Chai, Z.G. Song*, F.M. Li. Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronautica, 2017, 140: 176-189.
[17] Y.Y. Chai, Z.G. Song*, F.M. Li. Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Composite Structures, 2017, 179: 61-76.
[18] Y.Y. Chai, F.M. Li, Z.G. Song. Nonlinear vibration behaviors of composite laminated plates with time-dependent base excitation and boundary conditions. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(2): 145-161.
[19] Z.G. Song, F.M. Li. Flutter and buckling characteristics and active control of sandwich panels with triangular lattice core in supersonic airflow. Composites Part B: Engineering, 2017, 108: 334-344.
[20] T.Z. Yang, Z.G. Song, E. Clerkin, Y.W. Zhang, J.H. Sun, Y.S. Su, L.Q. Chen, P. Hagedorn. A programmable nonlinear acoustic metamaterial. AIP Advance, 2017, 7, 095323.
[21] Z.G. Song, L.W. Zhang, K.M. Liew. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Composite Structures, 2016, 158: 92-100.
[22] Z.G. Song, L.W. Zhang, K.M. Liew. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences, 2016, 115: 339-347.
[23] Z.G. Song, L.W. Zhang, K.M. Liew. Dynamic responses of CNT reinforced composite plates subjected to impact loading. Composites Part B: Engineering, 2016, 99: 154-161.
[24] Z.G. Song, L.W. Zhang, K.M. Liew. Aeroelastic analysis of CNT reinforced functionally graded composite panels in supersonic airflow using a higher-order shear deformation theory. Composite Structures, 2016, 141: 79-90.
[25] L.W. Zhang, Z.G. Song*, K.M. Liew*. Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 427-441.
[26] L.W. Zhang, Z.G. Song, K.M. Liew*. Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Composites Part B: Engineering, 2016, 85: 140-149.
[27] Z.G. Song, L.W. Zhang, K.M. Liew. Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. International Journal of Mechanical Sciences, 2016, 105: 90-101.
[28] Z.G. Song, F.M. Li. Aerothermoelastic analysis of lattice sandwich composite panels in supersonic airflow. Meccanica, 2016, 51(4): 877-891.
[29] L.W. Zhang, Z.G. Song*, K.M. Liew. State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory. Composite Structures, 2015, 134: 989-1003.
[30] L.W. Zhang, Z.G. Song, K.M. Liew*. Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Composite Structures, 2015, 128: 165-175.
[31] F.M. Li, Z.G. Song, C.C. Sun. Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mechanica Solida Sinica, 2015, 28(6): 639-646.
[32] Z.G. Song, F.M. Li, W. Zhang. Active flutter and aerothermal postbuckling control for nonlinear composite laminated panels in supersonic airflow. Journal of Intelligent Material Systems and Structures, 2015, 26(7): 840-857.
[33] F.M. Li, Z.G. Song. Vibration analysis and active control of nearly periodic two-span beams with piezoelectric actuator/sensor pairs. Applied Mathematics and Mechanics, 2015, 36(3): 279-292.
[34] Z.G. Song, F.M. Li. Investigations on the flutter properties of supersonic panels with different boundary conditions. International Journal Dynamics and Control, 2014, 2: 346-353.
[35] F.M. Li, Z.G. Song. Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow. Acta Mechanica, 2014, 225(12): 3339-3351.
[36] Z.G. Song, F.M. Li. Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels. Journal of Vibration and Control, 2014, 20(14): 2118-2132.
[37] Z.G. Song, F.M. Li. Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow. International Journal of Mechanical Sciences, 2014, 81: 65-72.
[38] Z.G. Song, F.M. Li. Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams, Nonlinear Dynamics, 2014, 76(1): 57-68.
[39] Z.G. Song, F.M. Li. Aerothermoelastic analysis of nonlinear composite laminated panel with aerodynamic heating in hypersonic flow. Composites Part B: Engineering, 2014, 56: 830-839.
[40] Z.G. Song, F.M. Li. Aerothermoelastic analysis and active flutter control of supersonic composite laminated cylindrical shells. Composite Structures, 2013, 106: 653-660.
[41] F.M. Li, Z.G. Song. Flutter and thermal buckling control for composite laminated panels in supersonic flow. Journal of Sound and Vibration, 2013, 332(22): 5678-5695.
[42] F.M. Li, Z.G. Song, Z.B. Chen. Active vibration control of conical shells using piezoelectric materials. Journal of Vibration and Control, 2012, 18(14): 2234-2256.
[43] Z.G. Song, F.M. Li. Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Composite Structures, 2012, 94(2): 702-713.
[44] Z.G. Song, F.M. Li. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Materials and Structures, 2011, 20(5): 055013.