近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] J Liang, K Qiao, M Yuan, K Yu*, B Qu, S Ge, Y Li, and G Chen. Evolutionary multi-task optimization for parameters extraction of photovoltaic models. Energy Conversion and Management, vol. 207, pp.112509, 2020.
[2] M. Y. Yu, X. Li, J. J. Liang*. A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization. Structural and Multidisciplinary Optimization, vol. 61(2), pp.711-729, 2020.
[3] C. T. Yue, J. J. Liang*, B. Y. Qu, Y. H. Han, Y. S. Zhu and O. D. Crisalle. A novel multiobjective optimization algorithm for sparse signal reconstruction. Signal Processing, vol. 167, pp.107292, 2020.
[4] C. T. Yue, B. Y. Qu, K. J. Yu, J. J. Liang* and X. D. Li. A novel scalable test problem suite for multimodal multiobjective optimization. Swarm and Evolutionary Computation, vol. 48, pp. 62-71, 2019.
[5] K. J. Yu, B. Y. Qu, C. T. Yue, S. L. Ge, X. Chen and J. J. Liang*. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy, vol. 237, pp. 241-257, 2019.
[6] Z. Li, Z. Cheng*, J. Liang, J. Si, L. Dong, and S. Li. Distributed Event-triggered Secondary Control for Economic Dispatch and Frequency Restoration Control of Droop-controlled AC Microgrids. IEEE Transactions on Sustainable Energy, vol. 10, pp. 4015-4025, 2019.
[7] J. Liang, S. Ge, B. Qu, K. Yu*, F. Liu, H. Yang, P. Wei, and Z. Li. Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Conversion and Management, , vol. 203, pp. 112-138, 2019.
[8] B. Qu, C. Li, J. Liang, L. Yan*, K. Yu, and Y. Zhu. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Applied Soft Computing, vol. 86, pp. 105886, 2019.
[9] J. J. Liang, W. W. Xu, C. T. Yue, K. J. Yu, H. Song, O. C. Crisalle and B. Y. Qu*. Multimodal multiobjective optimization with differential evolution. Swarm and Evolutionary Computation, vol. 44, pp. 1028-1059, 2018.
[10] K. J. Yu, J. J. Liang*, B. Y. Qu, Z. P. Cheng and H. S. Wang. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Applied Energy, vol. 226, pp. 408-422, 2018.
[11] C. T. Yue, B. Y. Qu, and J. J. Liang*. A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Transactions on Evolutionary Computation, vol. 22(5), pp. 805-817, 2018.
[12] B. Y. Qu, Y. S. Zhu, Y. C. Jiao, M. Y. Wu, J. J. Liang*, P. N. Suganthan. A Survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm and Evolutionary Computation, vol. 38, pp. 1-11, 2018.
[13] K. J. Yu, J. J. Liang*, B. Y. Qu, X. Chen, and H. S. Wang. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Conversion and Management, vol. 150, pp. 742-753, 2017.
[14] B. Y. Qu, J. J. Liang*, Y. S. Zhu, Z. Y. Wang and P. N. Suganthan. Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm. Information Sciences, vol. 351, pp. 48-66, 2016.
[15] B. Y. Qu, J. J. Liang*, Z. Y. Wang, Q. Chen, P. N. Suganthan. Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm and Evolutionary Computation, vol. 26, pp. 23-34, 2016.
[16] B. Y. Qu, B. F. Lang, J. J. Liang*, A. K. Qin and O. D. Crisalle. Two-hidden-layer extreme learning machine for regression and classification. Neurocomputing, vol. 175, pp. 826-834, 2016.
[17] J. J. Liang, B. Y. Qu, X. B. Mao, B. Niu, D.Y. Wang. Differential evolution based on fitness euclidean-distance ratio for multimodal optimization. Neurocomputing, vol. 137, pp. 252-260, 2014.
[18] B. Y. Qu*, P. N. Suganthan, J. J. Liang. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, vol. 6(5), pp. 601-614, 2012.
[19] B. Y. Qu*, J. J. Liang, P. N. Suganthan. Niching particle swarm optimization with local search for multi-modal optimization. Information Sciences, vol. 197, pp. 131-143, 2012 .
[20] Q. K. Pan, P. N. Suganthan, J. J. Liang, M. F. Tasgetiren. A local-best harmony search algorithm with dynamic sub-harmony memoriesfor lot-streaming flow shop scheduling problem. Expert Systems with Applications, vol. 38 (4), pp. 3252–3259, 2011.
[21] J. J. Liang, P. N. Suganthan, A. K. Qin, S. Baska. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, vol. 10(3), pp. 281 - 295, 2006.