研究领域
反问题、 图像处理、 不确定性量化和数据科学, 特别关注使用新的贝叶斯方法解决数学和工程问题。
不确定性量化, 图像处理, 反问题
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Didi Lv,QIngping Zhou,Jae Kyu Choi,Jinglai Li,Xiaoqun Zhang.Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction.[J]:Inverse Problems & Imaging,2020,14(1):117-132
[2]Qingping Zhou,Tengchao Yu,Xiaoqun Zhang,Jinglai Li.Bayesian Inference and Uncertainty Quantification for Medical Image Reconstruction with Poisson Data.[J]:SIAM Journal on Imaging Sciences,2020,13(1):29-52
[3]Qingping Zhou,Wenqing Liu,Jinglai Li,Youssef M Marzouk.An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems.[J]:Inverse Problems,2018,34(2018):095001
[4]Qingping Zhou,Zixi Hu,Zhewei Yao,Jinglai Li.A Hybrid Adaptive MCMC Algorithm in Function Spaces.[J]:SIAM/ASA Journal on Uncertainty Quantification,2017,5:621-639
[5]lJianzhou Wang, Haiyan Jiang, QingpingZhou, Jie Wu, Shanshan Qin.China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model.[J]:Renewable and Sustainable Energy Reviews,2015,53:1149-1167
[6]Jianzhou Wang, Shanshan Qin, QingpingZhou, Haiyan Jiang.Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China.[J]:Renewable Energy,2014,76:91-101
[7]Qingping Zhou, Haiyan Jiang, Jianzhou Wang, Jianling Zhou.A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network.[J]:Science of The Total Environment,2014,496:264-274