当前位置: X-MOL首页全球导师 国内导师 › 徐宇锋

个人简介

理学博士,应用数学专业,副教授,硕士研究生导师。 孤身辞益入橘洲,不知几春复几秋。 远渡西北历两暑,重回中南逢一流。 体如苔花争牡色,声效皋鹤遏秦讴。 百年树人勤为本,双鬓未白岂敢休。 教育经历 [1] 2009.9-2014.6 中南大学 | 应用数学 | 博士学位 | 博士研究生毕业 [2] 2005.9-2009.6 中南大学 | 应用数学 | 学士学位 | 大学本科毕业 工作经历 [1] 2015.8-2016.1 University of Macau | Department of Mathematics | Post-doctoral Fellow [2] 2017.9-至今 中南大学 | 数学与统计学院 | 副教授 [3] 2014.9-2017.9 中南大学 | 数学与统计学院 | 讲师 讲授课程 [1]常微分方程,48.0 [2]复变函数,48.0 [3]复变函数与积分变换,40.0 [4]数学物理方程 [5]实变函数,48.0 [6]微分方程数值解法,48.0 [7]数值分析,48.0 [8]Lectures on Numerical Analysis,48.0 科研项目 [1]湖南省自然科学基金青年基金项目(2019-2021),湖南省科学技术厅 [2]国家自然科学基金青年基金项目(2016-2018),已结题,国家自然科学基金委员会 [3]AMS China Exchange Program: Fan Fund Travel Grants (2017-2018),美国数学会(AMS) [4]湖南省优秀博士论文科研资助基金(2016-2018),已结题 [5]中国博士后科学基金第57批面上资助项目(2015-2017),已结题 获奖信息 [1]2018年CUMCM指导教师,国家级二等奖1项,湖南省一等奖1项,二等奖1项,三等奖2项 [2]2018年MCM/ICM指导教师,Meritorious Winner 1项,Honorable Mention 6项 [3]2017年CUMCM指导教师,湖南省一等奖1项,二等奖4项,三等奖1项 [4]2017年MCM/ICM指导教师,Meritorious Winner 4项,Honorable Mention 18项 [5]2016年CUMCM指导教师,湖南省三等奖2项 [6]2016年MCM/ICM指导教师,Meritorious Winner 2项,Honorable Mention 13项 [7]中南大学2015-2016学年优秀班导师|2017 [8]2014年湖南省高等学校教师岗前培训优秀学员|2015

研究领域

[1] Mathematical Models from Combustion Process [2] Numerical Methods for Differential Equation [3] Fractional Calculus and Their Applications

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Z.B. Wang, Y. Xu.Quenching of combustion explosion model with balanced space-fractional derivative.[J]:Mathematical Methods in the Applied Sciences,2019 [2]D.S. Kong, Y. Xu, Z.S. zheng.Numerical method for generalized time fractional KdV‐type equation.[J]:Numerical Methods for PDEs,2019 [3]Q. Xu, Y. Xu.Quenching study of two-dimensional fractional reaction-diffusion equation from combustion process.[J]:Computers and Mathematics with Applications,2019,78(5):1490-1506 [4]D.S. Kong, Y. Xu, Z.S. Zheng.A hybrid numerical method for the KdV equation by finite difference and sinc collocation method.[J]:Applied Mathematics and Computation,2019,355:61-72 [5]K. Kumar, R.K. Pandey, S. Sharma, Y. Xu.Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation.[J]:Numerical Methods for PDEs,2019,35(3):1164-1183 [6]Y. Xu, Z. Wang.Quenching phenomenon of a time-fractional Kawarada equation.[J]:Journal of Computational and Nonlinear Dynamics,2018,13:101010-1 [7]Q. Xu, Y. Xu.Extremely low order time-fractional differential equation and application in combustion process.[J]:Commun Nonlinear Science Numerical Simulat,2018(64):135-148 [8]Y. Xu, H.W. Sun, Q. Sheng.On variational properties of balanced central fractional derivatives.[J]:International Journal of Computer Mathematics,2018,(6-7)(95):1195-1209 [9]Y. Xu.Quenching phenomenon in a fractional diffusion equation and its numerical simulation.[J]:International Journal of Computer Mathematics,2017,1(95):98-113 [10]Y. Xu, Z. Zheng.Quenching phenomenon of a time-fractional diffusion equation with singular source term.[J]:Mathematical Methods in the Applied Sciences,2017,16(40):5750-5759 [11]Y. Xu.Dynamic behaviors of generalized fractional chaotic systems.[J]:Acta Automatica Sinica,2017,9(43):1619-1624 [12]Y. Xu.Fractional boundary value problems with integral and anti-periodic boundary conditions.[J]:Bulletin of the Malaysian Math Sciences,2016,2(39):571-587 [13]O.P. Agrawal, Y. Xu.Generalized vector calculus on convex domain.[J]:Commun Nonlinear Sci Numer Simulat,2015,(1-3)(23):129-140 [14]Y. Xu, V.S. Erturk.A finite difference technique for solving variable-order fractional integro-differential equations.[J]:Bull. Iranian Math. Soc.,2014,40(3):699-712 [15]Y. Xu, O.P. Agrawal, N. Pathak.Solution of new generalized diffusion-wave equation defined in a bounded domain.[J]:Journal of Applied Nonlinear Dynamics,2014,3(2):159-171 [16]Y. Xu, O.P. Agrawal.Models and numerical solutions of generalized oscillator equations.[J]:Journal of Vibration and Acoustics,2014,136(5):151903-1 [17]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations.[J]:Central Euro J. Phys.,2013,11(10):1178-1193 [18]Y. Xu, O.P. Agrawal.Models and numerical schemes for generalized van der Pol equations.[J]:Commun Nonlinear Sci Numer Simulat,2013,18(12):3575-3589 [19]Y. Xu, Z. He.Synchronization of variable-order fractional financial system via active control method.[J]:Central Euro J. Phys.,2013,11(6):824-835 [20]Y. Xu, Z. He, O.P. Agrawal.Numerical and analytical solutions of new generalized fractional diffusion equation.[J]:Computers and Mathematics with Applications,2013,66:2019-2029 [21]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalzied fractional Burgers equation.[J]:Fract. Calc. Appl. Anal.,2013,16(3):709-736 [22]Y. Xu, Z. He, Q. Xu.Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative.[J]:International Journal of Computer Mathematics,2013,91(3):588-600 [23]X. Luo, S. Ma, Y. Xu.The diversity and its formation mechanism of multifractal properties of Chinese stock market.[J]:Middle Eastern Finance and Economics,2012,16(2012):65-79 [24]Y. Xu, Z. He.The short memory principle for solving Abel differential equation of fractional order.[J]:Comput. Math. Appl.,2011(62):4796-4805

推荐链接
down
wechat
bug