个人简介
理学博士,应用数学专业,副教授,硕士研究生导师。
孤身辞益入橘洲,不知几春复几秋。
远渡西北历两暑,重回中南逢一流。
体如苔花争牡色,声效皋鹤遏秦讴。
百年树人勤为本,双鬓未白岂敢休。
教育经历
[1] 2009.9-2014.6
中南大学 | 应用数学 | 博士学位 | 博士研究生毕业
[2] 2005.9-2009.6
中南大学 | 应用数学 | 学士学位 | 大学本科毕业
工作经历
[1] 2015.8-2016.1
University of Macau | Department of Mathematics | Post-doctoral Fellow
[2] 2017.9-至今
中南大学 | 数学与统计学院 | 副教授
[3] 2014.9-2017.9
中南大学 | 数学与统计学院 | 讲师
讲授课程
[1]常微分方程,48.0
[2]复变函数,48.0
[3]复变函数与积分变换,40.0
[4]数学物理方程
[5]实变函数,48.0
[6]微分方程数值解法,48.0
[7]数值分析,48.0
[8]Lectures on Numerical Analysis,48.0
科研项目
[1]湖南省自然科学基金青年基金项目(2019-2021),湖南省科学技术厅
[2]国家自然科学基金青年基金项目(2016-2018),已结题,国家自然科学基金委员会
[3]AMS China Exchange Program: Fan Fund Travel Grants (2017-2018),美国数学会(AMS)
[4]湖南省优秀博士论文科研资助基金(2016-2018),已结题
[5]中国博士后科学基金第57批面上资助项目(2015-2017),已结题
获奖信息
[1]2018年CUMCM指导教师,国家级二等奖1项,湖南省一等奖1项,二等奖1项,三等奖2项
[2]2018年MCM/ICM指导教师,Meritorious Winner 1项,Honorable Mention 6项
[3]2017年CUMCM指导教师,湖南省一等奖1项,二等奖4项,三等奖1项
[4]2017年MCM/ICM指导教师,Meritorious Winner 4项,Honorable Mention 18项
[5]2016年CUMCM指导教师,湖南省三等奖2项
[6]2016年MCM/ICM指导教师,Meritorious Winner 2项,Honorable Mention 13项
[7]中南大学2015-2016学年优秀班导师|2017
[8]2014年湖南省高等学校教师岗前培训优秀学员|2015
研究领域
[1] Mathematical Models from Combustion Process
[2] Numerical Methods for Differential Equation
[3] Fractional Calculus and Their Applications
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Z.B. Wang, Y. Xu.Quenching of combustion explosion model with balanced space-fractional derivative.[J]:Mathematical Methods in the Applied Sciences,2019
[2]D.S. Kong, Y. Xu, Z.S. zheng.Numerical method for generalized time fractional KdV‐type equation.[J]:Numerical Methods for PDEs,2019
[3]Q. Xu, Y. Xu.Quenching study of two-dimensional fractional reaction-diffusion equation from combustion process.[J]:Computers and Mathematics with Applications,2019,78(5):1490-1506
[4]D.S. Kong, Y. Xu, Z.S. Zheng.A hybrid numerical method for the KdV equation by finite difference and sinc collocation method.[J]:Applied Mathematics and Computation,2019,355:61-72
[5]K. Kumar, R.K. Pandey, S. Sharma, Y. Xu.Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation.[J]:Numerical Methods for PDEs,2019,35(3):1164-1183
[6]Y. Xu, Z. Wang.Quenching phenomenon of a time-fractional Kawarada equation.[J]:Journal of Computational and Nonlinear Dynamics,2018,13:101010-1
[7]Q. Xu, Y. Xu.Extremely low order time-fractional differential equation and application in combustion process.[J]:Commun Nonlinear Science Numerical Simulat,2018(64):135-148
[8]Y. Xu, H.W. Sun, Q. Sheng.On variational properties of balanced central fractional derivatives.[J]:International Journal of Computer Mathematics,2018,(6-7)(95):1195-1209
[9]Y. Xu.Quenching phenomenon in a fractional diffusion equation and its numerical simulation.[J]:International Journal of Computer Mathematics,2017,1(95):98-113
[10]Y. Xu, Z. Zheng.Quenching phenomenon of a time-fractional diffusion equation with singular source term.[J]:Mathematical Methods in the Applied Sciences,2017,16(40):5750-5759
[11]Y. Xu.Dynamic behaviors of generalized fractional chaotic systems.[J]:Acta Automatica Sinica,2017,9(43):1619-1624
[12]Y. Xu.Fractional boundary value problems with integral and anti-periodic boundary conditions.[J]:Bulletin of the Malaysian Math Sciences,2016,2(39):571-587
[13]O.P. Agrawal, Y. Xu.Generalized vector calculus on convex domain.[J]:Commun Nonlinear Sci Numer Simulat,2015,(1-3)(23):129-140
[14]Y. Xu, V.S. Erturk.A finite difference technique for solving variable-order fractional integro-differential equations.[J]:Bull. Iranian Math. Soc.,2014,40(3):699-712
[15]Y. Xu, O.P. Agrawal, N. Pathak.Solution of new generalized diffusion-wave equation defined in a bounded domain.[J]:Journal of Applied Nonlinear Dynamics,2014,3(2):159-171
[16]Y. Xu, O.P. Agrawal.Models and numerical solutions of generalized oscillator equations.[J]:Journal of Vibration and Acoustics,2014,136(5):151903-1
[17]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations.[J]:Central Euro J. Phys.,2013,11(10):1178-1193
[18]Y. Xu, O.P. Agrawal.Models and numerical schemes for generalized van der Pol equations.[J]:Commun Nonlinear Sci Numer Simulat,2013,18(12):3575-3589
[19]Y. Xu, Z. He.Synchronization of variable-order fractional financial system via active control method.[J]:Central Euro J. Phys.,2013,11(6):824-835
[20]Y. Xu, Z. He, O.P. Agrawal.Numerical and analytical solutions of new generalized fractional diffusion equation.[J]:Computers and Mathematics with Applications,2013,66:2019-2029
[21]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalzied fractional Burgers equation.[J]:Fract. Calc. Appl. Anal.,2013,16(3):709-736
[22]Y. Xu, Z. He, Q. Xu.Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative.[J]:International Journal of Computer Mathematics,2013,91(3):588-600
[23]X. Luo, S. Ma, Y. Xu.The diversity and its formation mechanism of multifractal properties of Chinese stock market.[J]:Middle Eastern Finance and Economics,2012,16(2012):65-79
[24]Y. Xu, Z. He.The short memory principle for solving Abel differential equation of fractional order.[J]:Comput. Math. Appl.,2011(62):4796-4805