近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]S.Xiang,.On Interpolation Approximation: Convergence rates for polynomial interpolation for functions of limited regularity:SIAM J. Numer. Anal.,2016,54(4):2081–2113
[2]S.Xiang,.On Error Bounds for orthogonal Polynomial Expansions and Gauss-type Quadrature:SIAM J. Numer. Anal.,2012,50:1240-1263
[3]S.Xiang,F.Bornemann,.On the convergence rates of Gauss and Clenshaw-Curtis quadrature for functions of limited regularity:SIAM J. Numer. Anal.,2012,50:2581-2587
[4]S.Xiang,G.He,.The fast implementation of higher order Hermite-Fejer interpolation:SIAM J. Sci. Comput.,2015,37(4):A1727–A1751
[5]X.Chen,S.Xiang,.Perturbation Bounds of P-matrix Linear omplementarity Problems:SIAM J. Optimization,2007,18:1250-1265
[6]S.Xiang,.Correction to "strict diagonal dominance and optimal bounds for the Skeel condition number":SIAM J. Numer. Anal.,2010,47:4793-4795
[7]H.Wang,S.Xiang,.On the convergence rates of Legendre approximation:Math. Comput.,2012,81:861–877
[8]S.Xiang,H.Wang,.Fast Integration of Highly Oscillatory Integrals with exotic Oscillators:Math. Comput.,2010,79:829-844
[9]S.Xiang,G.Liu,.Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities:Numer. Math.,2020,145:117-148
[10]S.Xiang,X.Chen,H.Wang,.Error bounds for approximation in Chebyshev points:Numer. Math.,2010,116:463-491
[11]S.Xiang,.Efficient Filon-Type Methods for \int_a^bf(x)e^{i\omega g(x)}dx:Numer. Math.,2007,105:633-658
[12]X.Chen,S.Xiang,.Sparse solutions of linear complementarity problems:Math. Program. Ser. A,2016,159(1-2):539-556
[13]X.Chen,S.Xiang,.Newton Iterations in Implicit Time-Stepping Scheme for Differential Linear Complementarity Systems:Math. Program. Ser. A,2013,138:579-606
[14]X.Chen,S.Xiang,.Implicit Solution Function of P$_0$ and Z Matrix Linear Complementarity constraints:Math. Program. Ser. A,2010,128(1-2):1-18
[15]X.Chen,S.Xiang,.Computation of error bounds for P-matrix linear complementarity problems, Math. Program:Math. Program. Ser. A,2006,106:513-525
[16]S.Xiang,Y.Cho,H.Wang,H.Brunner,.Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications:IMA J. Numer. Anal.,2011,31(4):1281-1314
[17]H.Wang,S.Xiang,.Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel:IMA J. Numer. Anal.,2011,31(2):469-490
[18]S.Xiang,.一些高振荡积分、高振荡积分方程的高性能计算:中国科学:数学,2012,42(7):651-670
[19]李松华,冼军,向淑晃,.高频散射问题的高效配置法:中国科学:数学,2017,47:651-666
[20]Y.Wang,S.Xiang,.Levin methods for highly oscillatory integrals with singularities:SCIENCE CHINA: Mathematics,2020
[21]H.Zhou,B.Guo,S.Xiang,.Performance Output Tracking for Multidimensional Heat Equation Subject to Unmatched Disturbance and Noncollocated Control:IEEE Tran. Auto. Cont.,2020,65:1940-1955
[22]S.Xiang,G.He,Y.Cho,.On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals:Adv. Comput. Math.,2015,41:573–597
[23]S.Xiang,.Numerical analysis on fast integration of highly oscillatory functions:BIT Numer. Math.,2007,47(2):469-482
[24]S.Xiang,H.Brunner,.Efficient Methods for Volterra Integral Equations with Highly Oscillatory Bessel Kernels:BIT Numer. Math.,2013,52:241-263
[25]J.Ma,S.Xiang,.A Collocation Boundary Value Method for Linear Volterra Integral Equations:J. Sci. Comput.,2017,71(1):1-20
[26]C.Wei,etc.,.Implosion of the Argentinian submarine ARA San Juan S-42 undersea: Modeling and simulation:Commun. Nonliear Sci Numer. Similat.,2020
[27]Y.Tian,S.Xiang,G.Liu,.Fast computation of the spectral differentiation by the fast multipole method:Comput. Math. Appl.,2019,78(1):240-253
[28]C.Fang,G.He,S.Xiang,.Hermite-Type Collocation Methods to Solve Volterra Integral Equations with Highly Oscillatory Bessel Kernels:Symmetric—BASEL,2019,11(2):168
[29]R.Chen,S.Xiang,X.Kuang,.On evaluation of oscillatory transforms from position to momentum space:Appl. Math. Comput.,2019,344:183-190
[30]Q.Zhang,S.Xiang,.On fast multipole methods for Volterra integral equations with highly oscillatory kernels:J. Comput. Appl. Math.,2019,348:535-554
[31]S.Xiang,X.Chen,Y.Zhou,.Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches:Circuits Systems Signal Proc.,2019,38(4):1432-1451
[32]G.Liu,S.Xiang,.Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels:Appl. Math. Comput.,2019,340:251-267
[33]Y.Tian,S.Xiang,.On convergence rates of prolate interpolation and differentiation:Appl. Math. Lett.,2019,94:250-256
[34]S.Xiang,.On van der Corput-type lemmas for Bessel and Airy transforms and applications:J. Comput. Appl. Math.,2019,351:179-185
[35]B.Li,S.Xiang,.On fast multipole methods for Fredholm integral equations of the second kind with singular and highly oscillatory kernels:Int. J. Comput. Math.,2019,online:1-27
[36]B.Li,S.Xiang,G.Liu,.Laplace transforms for evaluation of Volterra integral equation of the first kind with highly oscillatory kernel:Comput. Appl. Math.,2019,38 (3):116
[37]S.Xiang,B.Li,G.Liu,.On efficient computation of highly oscillatory retarded potential integral equations:Int.l J. Comput. Math.,2018,95:2240-2255
[38]S.Xiang,G.Liu,.On optimal convergence rates of a two-dimensional fast multipole method:Appl. Math. Lett.,2018,76:74-80
[39]S.Xiang,.On the optimal convergence rates of Chebyshev interpolations for functions of limited regularity:Appl. Math. Lett.,2018,84:1-7
[40]G.Liu,S.Xiang,.Fast multipole methods for approximating a function from sampling values:Numer. Alg.,2017,76:727-743
[41]S.Li,S.Xiang,.A Fast Hybrid Galerkin Method for High-Frequency Acoustic Scattering:Applicable Analysis,2017,96:1698-1712
[42]Z.Xu,S.Xiang,.Gauss-type quadrature for highly oscillatory integrals with algebraic singularities and applications:International Journal of Computer Mathematics,2017,94:1123-1137
[43]Z.Xu,S.Xiang,.On the evaluation of highly oscillatory finite Hankel Transform using special functions:Numer. Alg.,2016,72:37–56
[44]Z.Xu,S.Xiang,G.He,.A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels:J.Comput. Appl. Math.,2016,300:354–368
[45]S.Xiang,C.Fang,Z.Xu,.On uniform approximations to hypersingular finite-part integrals:J. Math. Anal. Appl.,2016,435(2):1210-1228
[46]G.He,S.Xiang,E.Zhu,.Efficient computation of highly oscillatory integrals with weak singularities by Gauss-type method:Int. J. Computer Math.,2016,93(1):83-107
[47]Q.Wu,S.Xiang,.Fast multipole method for singular integral equations of second kind:Advances in Difference Equations,2015:191
[48]Z.Xu,G.V.Milovanovic,S.Xiang,.Efficient computation of highly oscillatory integrals with Hankel kernel:Appl. Math. Comput.,2015,261:312-322
[49]J.Ma,C.Fang,S.Xiang,.Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations:J. Comput. Appl. Math.,2015,281:120-125
[50]G.He,S.Xiang,.An improved algorithm for the evaluation of Cauchy principal value of oscillatory functions and its application:J. Comput. Appl. Math.,2015,280:1-13
[51]S.Xiang,.Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind:Appl. Math. Comput.,2014,232:944-954
[52]Z.Xu,S.Xiang,.Numerical evaluation of a class of highly oscillatory integrals involving Airy:Appl. Math.Comput.,2014,246:54-63
[53]J.Ma,S.Xiang,.High-order fast integration for earth-return impedance between underground and overhead conductors in Matlab:Compel,2014,33:1809-1818
[54]S.Li,S.Xiang,.Convergence analysis of a coupled method for Helmholtz equation:Complex Variables and Elliptic Equations,2014,59(4):484-503
[55]S.Xiang,G.He,H.Wang,.On fast and stable implementation of Clenshaw-Curtis and Fejér-Type quadrature rules:Abst. Appl. Anal.,2014:1-10
[56]S.Xiang,Q.Wu,.Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels:Appl. Math. Comput.,2013,219(9):4884-4891
[57]S.Xiang,.On convergence rates of Fejer and Gauss-Chebyshev quadrature rules:J. Math. Anal. Appl.,2013,405:687-699
[58]J.Ma,S.Xiang,H.Kang,.On the convergence rates of Filon methods for a Volterra integral equation with highly oscillatory Bessel kernels:Appl. Math. Lett.,2013,26:699-705
[59]S.Xiang,K.He,.On the implementation of Discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels:Appl. Math. Comput.,2013,219:4884–4891
[60]J.Ma,S.Xiang,.Efficient methods for the computation of Pollaczek integrals in the?magnetic field:International J. Appl. Electromagnetics and Mechanics,2013,41:227-236
[61]S.Xiang,.On fast algorithms for the evaluation of Legendre coefficients:Applied Mathematics Letters,2013,26:194–200
[62]H.Kang,S.Xiang,.Efficient quadrature of highly oscillatory integrals with algebraic singularities:J. Comp. Appl. Math.,2013,237:576–588
[63]S.Xiang,.Asymptotics on Laguerre or Hermite Polynomial Expansions and Their Applications in Gauss Quadrature:J. Math. Anal. Appl.,2012,393:434–444
[64]H.Kang,S.Xiang,.Efficient integration for a class of highly oscillatory integrals:Appl. Math. Comput.,2011,218(22):3553–3564
[65]X.Peng,W.Li,S.Xiang,.A class of triangular preconditioners for saddle point:Computing,2011,93(1):27-46
[66]H.Mo,S.Xiang,.On the calculation of highly oscillatory integrals with an algebraic singularity:Appl. Math. Comput.,2011,207:9105-9110
[67]S.Xiang,X.Chen,.Computation of Generalized Differentials in Nonlinear Complementarity Problems:Comput. Optim. Appl.,2011,50(2):403-423
[68]Kang,S.Xiang,G.He,.On the calculation of highly oscillatory integrals with an algebraic singularity:Appl. Math. Comput.,2010,217(8):3890-3897
[69]H.Wang,S.Xiang,.On the evaluation of Cauchy principal value integrals of oscillatory functions:J. Comp. Appl. Math.,2010,234:95-100
[70]R.Chen,S.Xiang,.Note on the homotopy perturbation method for multivariate vector-value oscillatory integrals:Appl. Math. Comput.,2009,215:78-84
[71]R.Chen,S.Xiang,Y.Zhou,.A paprameter method for computing highly oscillatory integrals:Comp. Math. Appl.,2009,58:1830-1837
[72]R.Chen,S.Xiang,.Solution of Helmholtz equations by variational iteration:Modern Physics Letters B,2009,23:1935-1945
[73]S.Xiang,W.Gui,P.Mo,.Numerical quadrature for Bessel transformation:Appl. Numer. Math.,2008,58:1247-1261
[74]S.Xiang,H.Wang,.On the Levin iteration method for oscillatory integrals:J. Comput. Appl. Math.,2008,217:38-45
[75]S.Xiang,W.Gui,.On generalized quadrature rules for fast oscillatory integrals:Appl. Math. Comput.,2008,197:60-75
[76]S.Xiang,.On the Filon and Levin Methods for Highly Oscillatory Integral \int_a^bf(x)e^{i\omega g(x)}dx:J. Comput. Appl. Math.,2007,208:434-439
[77]S.Xiang,.Efficient quadrature for highly oscillatory integrals involving critical points:J. Comput. Appl. Math.,2007,206:688-698
[78]L.Tan,S.Xiang,.On the Aleksandrov-Rassias problem and Hyers-Ulam stability problem:Banach J. Math.,2007,1:11-22
[79]J.M.Rassias,S.Xiang,M.J.Rassias,.On the Aleksandrov and triangle isometry Ulam stability problem:Int. J. Appl. Math. Stat.,2007,7:133-142
[80]S.Xiang,.On the Mazur-Ulam theorem and the solutions of two problems of Rassias:Nonlinear Func.Anal.Appl.,2007,12(1):99-105
[81]S.Xiang,S.Zhang,.A convergence analysis of block accelerated over-relaxation iterative methods for weak block $H$-matrices to partition $\pi$:Linear Algebra and Its Applications,2006,418:20-32
[82]S.Xiang,Y.Zhou,.On quadrature of highly oscillatory functions:J. Comp. Math.,2006,24(5):579-590
[83]S.Xiang,.Note on Filon-type integration for higher order exponential time differencing methods in stiff systems:J. Cent. South. Technol.,2005,12:296-303
[84]S.Xiang,.On the Aleksandrov problem and the Aleksandrov-Rassias problem:Nonlinear Func.Anal.Appl.,2005,10(5):835-841
[85]S.Xiang,.On quadrature of Bessel transformations:J.Comp. Appl. Math.,2005,177:231-239
[86]Z.Xu,S.Xiang,G.He,.Efficient evaluation of oscillatory Bessel Hilbert transforms:J. Comp. Appl. Math.,2014,258:57–66
[87]H.Wang,S.Xiang,.Uniform approximations to Cauchy principal value integrals of oscillatory functions:Appl. Math. Comput.,2009,205:1886-1894
[88]S.Xiang,.Small into isomorphisms on uniformly smooth spaces:J.Math. Anal. Appl.,2004,290:310-315
[89]H.Gong,S.Xiang,.Fixed point theorem on probabilistic normed space and their applications:J. Xi’an Jiaotong University,1993,27(3):121-126
[90]H.Gong,S.Xiang,.Weak t-function and Schweizer-Sklar open problem:J. Engineering Math.(China),1996,13(suppl.):30-36
[91]S.Xiang,H.Gong,Z.You,Q.Zhang,.The neighborhood structure in PN spaces and t-norm:J. Engineering Math.(China),1995,12(3):122-124
[92]S.Xiang,H.Gong,Z.You,.Some properties of operator spaces on locally bounded or locally convex probabilistic normed spaces:J. Xi’an Jiaotong University,1997,1(6):118-120
[93]S.W.Xiang,S.H.Xiang,.Generic stability on weight factors in multiobjective optization problems:PanAmerican Mathematical Journal,1997,7(2):79-84
[94]S.W.Xiang,S.H.Xiang,.The completion property in metric spaces and Banach contractive mapping principle:J. Math. Res. Exp.(China),1997,17(1):146-148
[95]S.H.Xiang,S.W.Xiang,.Notes on completely positive matrices:Linear Algebra Appl.,1998,271:273-282
[96]S.Xiang,Z.You,.Weak block diagonally dominant matrices, weak block H-matrix and their applications:Linear Algebra Appl.,1998,282:263-274
[97]S.H.Xiang,S.W.Xiang,Q.Zhang,.Note on weak block diagonally dominant matrices and their applications:J. Engineering Math.,1997,14(4):115-118
[98]S.H.Xiang,S.W.Xiang,.Column estimations about the spectral radius of M-1N matrix:J. Xi’an Jiaotong University,1998,32(6):86-89
[99]S.Xiang,.A preconditioning method for strictly dominant symmetric positive definite matrices:J. Xi’an Jiaotong University,1998,32(2):94-97
[100]S.Xiang,Z.You,.(0,1)-Matrices and generalized ultrametric matrices:J. System Science & Mathematical Science (English Series),1999,12(2):154-158
[101]S.Xiang,.Remarks on completely positive matrices and completely positive graphs:Int. J. Math. Game Theory Algebra,1999,8(4):195-206
[102]S.Xiang,.A further analysis on fixed point theorem in probabilistic normed spaces and its applications:Acta Math. Sci.,1999,19(4):456-460
[103]Th.M.Rassias,S.Xiang,.Mappings which preserve distances and the Mazur-Ulam Theorem:Publ. Fac. Eletr. Engin. Univ. Belgrade, Ser. Mat.,2000,11:1-8
[104]Th.M.Rassias,S.Xiang,.On approximate isometries in Banach spaces:Nonlinear Func. Anal. Appl.,2001,6(2):291-300
[105]S.Xiang,.The Aleksandrov problem and Rassias problem for isometric mappings:Nonlinear Func.Anal.Appl.,2001,6(1):69-77
[106]S.Xiang,Z.You,.Some inverse M-matrices problems:Acta Math. Appl. Sinica,2001,17(1):14-19
[107]S.Xiang,.Some Remarks on completely positive matrices and completely graphs:J. Chinese University Comp. Math.,2000,9:146-152
[108]S.Xiang,.Isometric isomorphisms and completely positive matrices:Journal of. Shi You University,2000,24(1):112-116
[109]Th.M.Rassias,S.Xiang,.On Mazur-Ulam theorem and mappings which preserve distances:Nonlinear Functional Analysis and Its Applications,2000,5(2):61-66
[110]S.Xiang,.Mappings of conservative distances and Mazur-Ulam theorem:J. Math. Anal. Appl.,2001,254:262-274
[111]Th.M.Rassias,S.Xiang,.On the stability of approximate isometries:Tamsui Oxford Journal of Mathematical Sciences,2002,18(1):45-56
[112]S.Xiang,.Hyers-Ulam-Rassias stability of approximate isometries on restricted domains:Journal of Central South University of Technology (English series),2002,9(4):289-292
[113]S.Xiang,.On an inequality of Hadamard product for an M-matrix or an H-matrix and its inverse:Linear Algebra Appl.,2003,367:17-27
[114]S.Xiang,.On theAleksandrov-Rassias problem and the geomrtric invariance in Hilbert spaces:Nonlinear Func.Anal.Appl.,2004,9(3):369-388