当前位置: X-MOL首页全球导师 国内导师 › 向淑晃

个人简介

曾获荣誉: 2004-11-01 当选: 日本JSPS资助任弘前大学长期特邀研究员 2006-09-01 当选: 入选教育部新世纪优秀人才计划 2011-12-01 当选: 入选湖南省学科带头人培养对象 向淑晃,湖南省计算数学与应用软件学会理事长,主要从事高频振荡问题、正交多项式理论等研究,在SIAM J. Numer. Anal.、SIAM J. Sci. Comput.、SIAM J. Optimization、Math. Program.、Numer. Math.、Math. Comput.等国际计算数学顶级期刊发表系列论文,Wang-Xiang给出的有关高斯-勒让德多项式零点与积分权的重心插值公式被国际权威Trefethen称为多项式关键十一个公式之一 ,高频振荡问题的研究也成为国际上几个重要团队之一;2006年入选教育部新世纪优秀人才计划,2009年入选Who is Who in the World,2011年入选湖南省学科带头人培养对象;2003年9月-2004年9月在英国剑桥大学访问,2004年11月-2005年9月获日本JSPS资助任弘前大学长期特邀研究员,2008年9月-2009年9月香港理工大学研究员。 教育经历 [1] 1994.9-1997.6 西安交通大学 | 计算数学 | 博士学位 | 博士研究生毕业 博士研究生 [2] 1989.9-1992.6 西安交通大学 | 基础数学 | 硕士学位 | 硕士研究生毕业 硕士研究生 [3] 1985.9-1989.6 湖南师范大学 | 数学 | 学士学位 | 大学本科毕业 本科 工作经历 [1] 1999.9-至今 中南大学 | 数学与统计学院 | 教授 [2] 2008.9-2009.9 香港理工大学 | 应用数学系 | 研究员 [3] 2004.11-2005.9 弘前大学 | 应用数学系 | JSPS长期研究员 [4] 2003.9-2004.9 剑桥大学 | 理论物理与应用数学系 | 访问学者 [5] 1997.9-1999.8 南开大学 | 数学科学院 | 博士后 科研项目 [1](弱、高阶奇异核)高频振荡边界积分方程的快速多极子与Chebyshev谱高精度算法研究 [2]大波数Helmholtz方程新型、高效积分方程解法的研究 [3]电、磁、声学研究中一类高振荡积分方程、微分方程渐进理论及其高性能计算研究 [4]高振荡函数高性能数值积分算法及其应用 著作成果 [1]Book-Chapter: On Approximate Isometries, Mathematics in the 21st Century, K.K Dewan and M. Mustafa eds.,[论文],Shuhuang Xiang,Deep & Deep Publication Pvt. Ltd.,2020 [2]Book-Chapter: On the Aleksandrov-Rassias problem for isometric mappings, MIA, Functional Equations, Inequalities and Applications[论文],Shuhuang Xiang,Kluwer Academic Publishers,2020 [3]Entry:Aleksandrov problem for isometric mappings, Encyclopaedia of Mathematics Suppl. III[其他],Shuhuang Xiang,Kluwer Academic Publishers,2020 [4]Book-Chapter:Aleksandrov problem and mappings which preserve distances, MIA, Functional equations and inequalities[论文],Shuhuang Xiang,Kluwer Academic Publishers,2020

研究领域

1. 新古典主义数值分析—插值快速算法(重心公式)、正交逼近、谱方法新型逼近理论: (1)多项式插值是函数逼近的最为基本的方法之一,它在科学计算领域有着广泛的应用。经典的插值多项式有Lagrange和Newton两种不同的表达形式,然而对于中等或大规模节点数的插值计算,这两种公式都存在计算成本高、稳定性差的缺陷,因而在实践中并不实用。为了克服这些缺陷,著名数学家Jacobi和Dupuy分别于1825和1948年提出了第一型和第二型重心插值公式,其中重心公式中重心权的快速计算是其实施的关键问题。 (2)基于正交多项式的插值和投影逼近、积分计算是函数逼近和谱方法的核心研究课题。它们的误差分析一方面可以用来衡量多项式逼近的质量,另一方面为构造高精度的多项式逼近提供理论指导,在p、hp型有限元以及谱元方法中有着重要的应用,其收敛性分析一直是众多数值学家长期关注的问题。 2.高频振荡问题(大波数问题)的理论、计算及其应用:高振荡问题广泛地出现在声波散射、光学、量子力学、医疗图像、遥感等众多领域,经典的算法对于这类问题的数值计算需要昂贵的计算成本,其高效计算具有挑战性。 3.高频、奇异边界元方法的快速多极子算法(FMM):边界元方法降低了模型分析的维数,但其生成的系数矩阵是稠密,矩阵结构性较差。为提高计算效率,快速多极子算法是现在应用最为广泛的一种快速边界元方法之一,由Rokhlin、Greengard等提出,与FFT等被列入二十世纪10大算法。由边界积分方程离散后的线性系统,可通过Krylov子空间方法或其它迭代算法快速实现,因此算法的复杂性相比于有限元、传统的边界元大为降低。对高频问题如何构造多极展开、高效实施FMM是亟待解决的挑战性问题。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]S.Xiang,.On Interpolation Approximation: Convergence rates for polynomial interpolation for functions of limited regularity:SIAM J. Numer. Anal.,2016,54(4):2081–2113 [2]S.Xiang,.On Error Bounds for orthogonal Polynomial Expansions and Gauss-type Quadrature:SIAM J. Numer. Anal.,2012,50:1240-1263 [3]S.Xiang,F.Bornemann,.On the convergence rates of Gauss and Clenshaw-Curtis quadrature for functions of limited regularity:SIAM J. Numer. Anal.,2012,50:2581-2587 [4]S.Xiang,G.He,.The fast implementation of higher order Hermite-Fejer interpolation:SIAM J. Sci. Comput.,2015,37(4):A1727–A1751 [5]X.Chen,S.Xiang,.Perturbation Bounds of P-matrix Linear omplementarity Problems:SIAM J. Optimization,2007,18:1250-1265 [6]S.Xiang,.Correction to "strict diagonal dominance and optimal bounds for the Skeel condition number":SIAM J. Numer. Anal.,2010,47:4793-4795 [7]H.Wang,S.Xiang,.On the convergence rates of Legendre approximation:Math. Comput.,2012,81:861–877 [8]S.Xiang,H.Wang,.Fast Integration of Highly Oscillatory Integrals with exotic Oscillators:Math. Comput.,2010,79:829-844 [9]S.Xiang,G.Liu,.Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities:Numer. Math.,2020,145:117-148 [10]S.Xiang,X.Chen,H.Wang,.Error bounds for approximation in Chebyshev points:Numer. Math.,2010,116:463-491 [11]S.Xiang,.Efficient Filon-Type Methods for \int_a^bf(x)e^{i\omega g(x)}dx:Numer. Math.,2007,105:633-658 [12]X.Chen,S.Xiang,.Sparse solutions of linear complementarity problems:Math. Program. Ser. A,2016,159(1-2):539-556 [13]X.Chen,S.Xiang,.Newton Iterations in Implicit Time-Stepping Scheme for Differential Linear Complementarity Systems:Math. Program. Ser. A,2013,138:579-606 [14]X.Chen,S.Xiang,.Implicit Solution Function of P$_0$ and Z Matrix Linear Complementarity constraints:Math. Program. Ser. A,2010,128(1-2):1-18 [15]X.Chen,S.Xiang,.Computation of error bounds for P-matrix linear complementarity problems, Math. Program:Math. Program. Ser. A,2006,106:513-525 [16]S.Xiang,Y.Cho,H.Wang,H.Brunner,.Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications:IMA J. Numer. Anal.,2011,31(4):1281-1314 [17]H.Wang,S.Xiang,.Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel:IMA J. Numer. Anal.,2011,31(2):469-490 [18]S.Xiang,.一些高振荡积分、高振荡积分方程的高性能计算:中国科学:数学,2012,42(7):651-670 [19]李松华,冼军,向淑晃,.高频散射问题的高效配置法:中国科学:数学,2017,47:651-666 [20]Y.Wang,S.Xiang,.Levin methods for highly oscillatory integrals with singularities:SCIENCE CHINA: Mathematics,2020 [21]H.Zhou,B.Guo,S.Xiang,.Performance Output Tracking for Multidimensional Heat Equation Subject to Unmatched Disturbance and Noncollocated Control:IEEE Tran. Auto. Cont.,2020,65:1940-1955 [22]S.Xiang,G.He,Y.Cho,.On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals:Adv. Comput. Math.,2015,41:573–597 [23]S.Xiang,.Numerical analysis on fast integration of highly oscillatory functions:BIT Numer. Math.,2007,47(2):469-482 [24]S.Xiang,H.Brunner,.Efficient Methods for Volterra Integral Equations with Highly Oscillatory Bessel Kernels:BIT Numer. Math.,2013,52:241-263 [25]J.Ma,S.Xiang,.A Collocation Boundary Value Method for Linear Volterra Integral Equations:J. Sci. Comput.,2017,71(1):1-20 [26]C.Wei,etc.,.Implosion of the Argentinian submarine ARA San Juan S-42 undersea: Modeling and simulation:Commun. Nonliear Sci Numer. Similat.,2020 [27]Y.Tian,S.Xiang,G.Liu,.Fast computation of the spectral differentiation by the fast multipole method:Comput. Math. Appl.,2019,78(1):240-253 [28]C.Fang,G.He,S.Xiang,.Hermite-Type Collocation Methods to Solve Volterra Integral Equations with Highly Oscillatory Bessel Kernels:Symmetric—BASEL,2019,11(2):168 [29]R.Chen,S.Xiang,X.Kuang,.On evaluation of oscillatory transforms from position to momentum space:Appl. Math. Comput.,2019,344:183-190 [30]Q.Zhang,S.Xiang,.On fast multipole methods for Volterra integral equations with highly oscillatory kernels:J. Comput. Appl. Math.,2019,348:535-554 [31]S.Xiang,X.Chen,Y.Zhou,.Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches:Circuits Systems Signal Proc.,2019,38(4):1432-1451 [32]G.Liu,S.Xiang,.Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels:Appl. Math. Comput.,2019,340:251-267 [33]Y.Tian,S.Xiang,.On convergence rates of prolate interpolation and differentiation:Appl. Math. Lett.,2019,94:250-256 [34]S.Xiang,.On van der Corput-type lemmas for Bessel and Airy transforms and applications:J. Comput. Appl. Math.,2019,351:179-185 [35]B.Li,S.Xiang,.On fast multipole methods for Fredholm integral equations of the second kind with singular and highly oscillatory kernels:Int. J. Comput. Math.,2019,online:1-27 [36]B.Li,S.Xiang,G.Liu,.Laplace transforms for evaluation of Volterra integral equation of the first kind with highly oscillatory kernel:Comput. Appl. Math.,2019,38 (3):116 [37]S.Xiang,B.Li,G.Liu,.On efficient computation of highly oscillatory retarded potential integral equations:Int.l J. Comput. Math.,2018,95:2240-2255 [38]S.Xiang,G.Liu,.On optimal convergence rates of a two-dimensional fast multipole method:Appl. Math. Lett.,2018,76:74-80 [39]S.Xiang,.On the optimal convergence rates of Chebyshev interpolations for functions of limited regularity:Appl. Math. Lett.,2018,84:1-7 [40]G.Liu,S.Xiang,.Fast multipole methods for approximating a function from sampling values:Numer. Alg.,2017,76:727-743 [41]S.Li,S.Xiang,.A Fast Hybrid Galerkin Method for High-Frequency Acoustic Scattering:Applicable Analysis,2017,96:1698-1712 [42]Z.Xu,S.Xiang,.Gauss-type quadrature for highly oscillatory integrals with algebraic singularities and applications:International Journal of Computer Mathematics,2017,94:1123-1137 [43]Z.Xu,S.Xiang,.On the evaluation of highly oscillatory finite Hankel Transform using special functions:Numer. Alg.,2016,72:37–56 [44]Z.Xu,S.Xiang,G.He,.A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels:J.Comput. Appl. Math.,2016,300:354–368 [45]S.Xiang,C.Fang,Z.Xu,.On uniform approximations to hypersingular finite-part integrals:J. Math. Anal. Appl.,2016,435(2):1210-1228 [46]G.He,S.Xiang,E.Zhu,.Efficient computation of highly oscillatory integrals with weak singularities by Gauss-type method:Int. J. Computer Math.,2016,93(1):83-107 [47]Q.Wu,S.Xiang,.Fast multipole method for singular integral equations of second kind:Advances in Difference Equations,2015:191 [48]Z.Xu,G.V.Milovanovic,S.Xiang,.Efficient computation of highly oscillatory integrals with Hankel kernel:Appl. Math. Comput.,2015,261:312-322 [49]J.Ma,C.Fang,S.Xiang,.Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations:J. Comput. Appl. Math.,2015,281:120-125 [50]G.He,S.Xiang,.An improved algorithm for the evaluation of Cauchy principal value of oscillatory functions and its application:J. Comput. Appl. Math.,2015,280:1-13 [51]S.Xiang,.Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind:Appl. Math. Comput.,2014,232:944-954 [52]Z.Xu,S.Xiang,.Numerical evaluation of a class of highly oscillatory integrals involving Airy:Appl. Math.Comput.,2014,246:54-63 [53]J.Ma,S.Xiang,.High-order fast integration for earth-return impedance between underground and overhead conductors in Matlab:Compel,2014,33:1809-1818 [54]S.Li,S.Xiang,.Convergence analysis of a coupled method for Helmholtz equation:Complex Variables and Elliptic Equations,2014,59(4):484-503 [55]S.Xiang,G.He,H.Wang,.On fast and stable implementation of Clenshaw-Curtis and Fejér-Type quadrature rules:Abst. Appl. Anal.,2014:1-10 [56]S.Xiang,Q.Wu,.Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels:Appl. Math. Comput.,2013,219(9):4884-4891 [57]S.Xiang,.On convergence rates of Fejer and Gauss-Chebyshev quadrature rules:J. Math. Anal. Appl.,2013,405:687-699 [58]J.Ma,S.Xiang,H.Kang,.On the convergence rates of Filon methods for a Volterra integral equation with highly oscillatory Bessel kernels:Appl. Math. Lett.,2013,26:699-705 [59]S.Xiang,K.He,.On the implementation of Discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels:Appl. Math. Comput.,2013,219:4884–4891 [60]J.Ma,S.Xiang,.Efficient methods for the computation of Pollaczek integrals in the?magnetic field:International J. Appl. Electromagnetics and Mechanics,2013,41:227-236 [61]S.Xiang,.On fast algorithms for the evaluation of Legendre coefficients:Applied Mathematics Letters,2013,26:194–200 [62]H.Kang,S.Xiang,.Efficient quadrature of highly oscillatory integrals with algebraic singularities:J. Comp. Appl. Math.,2013,237:576–588 [63]S.Xiang,.Asymptotics on Laguerre or Hermite Polynomial Expansions and Their Applications in Gauss Quadrature:J. Math. Anal. Appl.,2012,393:434–444 [64]H.Kang,S.Xiang,.Efficient integration for a class of highly oscillatory integrals:Appl. Math. Comput.,2011,218(22):3553–3564 [65]X.Peng,W.Li,S.Xiang,.A class of triangular preconditioners for saddle point:Computing,2011,93(1):27-46 [66]H.Mo,S.Xiang,.On the calculation of highly oscillatory integrals with an algebraic singularity:Appl. Math. Comput.,2011,207:9105-9110 [67]S.Xiang,X.Chen,.Computation of Generalized Differentials in Nonlinear Complementarity Problems:Comput. Optim. Appl.,2011,50(2):403-423 [68]Kang,S.Xiang,G.He,.On the calculation of highly oscillatory integrals with an algebraic singularity:Appl. Math. Comput.,2010,217(8):3890-3897 [69]H.Wang,S.Xiang,.On the evaluation of Cauchy principal value integrals of oscillatory functions:J. Comp. Appl. Math.,2010,234:95-100 [70]R.Chen,S.Xiang,.Note on the homotopy perturbation method for multivariate vector-value oscillatory integrals:Appl. Math. Comput.,2009,215:78-84 [71]R.Chen,S.Xiang,Y.Zhou,.A paprameter method for computing highly oscillatory integrals:Comp. Math. Appl.,2009,58:1830-1837 [72]R.Chen,S.Xiang,.Solution of Helmholtz equations by variational iteration:Modern Physics Letters B,2009,23:1935-1945 [73]S.Xiang,W.Gui,P.Mo,.Numerical quadrature for Bessel transformation:Appl. Numer. Math.,2008,58:1247-1261 [74]S.Xiang,H.Wang,.On the Levin iteration method for oscillatory integrals:J. Comput. Appl. Math.,2008,217:38-45 [75]S.Xiang,W.Gui,.On generalized quadrature rules for fast oscillatory integrals:Appl. Math. Comput.,2008,197:60-75 [76]S.Xiang,.On the Filon and Levin Methods for Highly Oscillatory Integral \int_a^bf(x)e^{i\omega g(x)}dx:J. Comput. Appl. Math.,2007,208:434-439 [77]S.Xiang,.Efficient quadrature for highly oscillatory integrals involving critical points:J. Comput. Appl. Math.,2007,206:688-698 [78]L.Tan,S.Xiang,.On the Aleksandrov-Rassias problem and Hyers-Ulam stability problem:Banach J. Math.,2007,1:11-22 [79]J.M.Rassias,S.Xiang,M.J.Rassias,.On the Aleksandrov and triangle isometry Ulam stability problem:Int. J. Appl. Math. Stat.,2007,7:133-142 [80]S.Xiang,.On the Mazur-Ulam theorem and the solutions of two problems of Rassias:Nonlinear Func.Anal.Appl.,2007,12(1):99-105 [81]S.Xiang,S.Zhang,.A convergence analysis of block accelerated over-relaxation iterative methods for weak block $H$-matrices to partition $\pi$:Linear Algebra and Its Applications,2006,418:20-32 [82]S.Xiang,Y.Zhou,.On quadrature of highly oscillatory functions:J. Comp. Math.,2006,24(5):579-590 [83]S.Xiang,.Note on Filon-type integration for higher order exponential time differencing methods in stiff systems:J. Cent. South. Technol.,2005,12:296-303 [84]S.Xiang,.On the Aleksandrov problem and the Aleksandrov-Rassias problem:Nonlinear Func.Anal.Appl.,2005,10(5):835-841 [85]S.Xiang,.On quadrature of Bessel transformations:J.Comp. Appl. Math.,2005,177:231-239 [86]Z.Xu,S.Xiang,G.He,.Efficient evaluation of oscillatory Bessel Hilbert transforms:J. Comp. Appl. Math.,2014,258:57–66 [87]H.Wang,S.Xiang,.Uniform approximations to Cauchy principal value integrals of oscillatory functions:Appl. Math. Comput.,2009,205:1886-1894 [88]S.Xiang,.Small into isomorphisms on uniformly smooth spaces:J.Math. Anal. Appl.,2004,290:310-315 [89]H.Gong,S.Xiang,.Fixed point theorem on probabilistic normed space and their applications:J. Xi’an Jiaotong University,1993,27(3):121-126 [90]H.Gong,S.Xiang,.Weak t-function and Schweizer-Sklar open problem:J. Engineering Math.(China),1996,13(suppl.):30-36 [91]S.Xiang,H.Gong,Z.You,Q.Zhang,.The neighborhood structure in PN spaces and t-norm:J. Engineering Math.(China),1995,12(3):122-124 [92]S.Xiang,H.Gong,Z.You,.Some properties of operator spaces on locally bounded or locally convex probabilistic normed spaces:J. Xi’an Jiaotong University,1997,1(6):118-120 [93]S.W.Xiang,S.H.Xiang,.Generic stability on weight factors in multiobjective optization problems:PanAmerican Mathematical Journal,1997,7(2):79-84 [94]S.W.Xiang,S.H.Xiang,.The completion property in metric spaces and Banach contractive mapping principle:J. Math. Res. Exp.(China),1997,17(1):146-148 [95]S.H.Xiang,S.W.Xiang,.Notes on completely positive matrices:Linear Algebra Appl.,1998,271:273-282 [96]S.Xiang,Z.You,.Weak block diagonally dominant matrices, weak block H-matrix and their applications:Linear Algebra Appl.,1998,282:263-274 [97]S.H.Xiang,S.W.Xiang,Q.Zhang,.Note on weak block diagonally dominant matrices and their applications:J. Engineering Math.,1997,14(4):115-118 [98]S.H.Xiang,S.W.Xiang,.Column estimations about the spectral radius of M-1N matrix:J. Xi’an Jiaotong University,1998,32(6):86-89 [99]S.Xiang,.A preconditioning method for strictly dominant symmetric positive definite matrices:J. Xi’an Jiaotong University,1998,32(2):94-97 [100]S.Xiang,Z.You,.(0,1)-Matrices and generalized ultrametric matrices:J. System Science & Mathematical Science (English Series),1999,12(2):154-158 [101]S.Xiang,.Remarks on completely positive matrices and completely positive graphs:Int. J. Math. Game Theory Algebra,1999,8(4):195-206 [102]S.Xiang,.A further analysis on fixed point theorem in probabilistic normed spaces and its applications:Acta Math. Sci.,1999,19(4):456-460 [103]Th.M.Rassias,S.Xiang,.Mappings which preserve distances and the Mazur-Ulam Theorem:Publ. Fac. Eletr. Engin. Univ. Belgrade, Ser. Mat.,2000,11:1-8 [104]Th.M.Rassias,S.Xiang,.On approximate isometries in Banach spaces:Nonlinear Func. Anal. Appl.,2001,6(2):291-300 [105]S.Xiang,.The Aleksandrov problem and Rassias problem for isometric mappings:Nonlinear Func.Anal.Appl.,2001,6(1):69-77 [106]S.Xiang,Z.You,.Some inverse M-matrices problems:Acta Math. Appl. Sinica,2001,17(1):14-19 [107]S.Xiang,.Some Remarks on completely positive matrices and completely graphs:J. Chinese University Comp. Math.,2000,9:146-152 [108]S.Xiang,.Isometric isomorphisms and completely positive matrices:Journal of. Shi You University,2000,24(1):112-116 [109]Th.M.Rassias,S.Xiang,.On Mazur-Ulam theorem and mappings which preserve distances:Nonlinear Functional Analysis and Its Applications,2000,5(2):61-66 [110]S.Xiang,.Mappings of conservative distances and Mazur-Ulam theorem:J. Math. Anal. Appl.,2001,254:262-274 [111]Th.M.Rassias,S.Xiang,.On the stability of approximate isometries:Tamsui Oxford Journal of Mathematical Sciences,2002,18(1):45-56 [112]S.Xiang,.Hyers-Ulam-Rassias stability of approximate isometries on restricted domains:Journal of Central South University of Technology (English series),2002,9(4):289-292 [113]S.Xiang,.On an inequality of Hadamard product for an M-matrix or an H-matrix and its inverse:Linear Algebra Appl.,2003,367:17-27 [114]S.Xiang,.On theAleksandrov-Rassias problem and the geomrtric invariance in Hilbert spaces:Nonlinear Func.Anal.Appl.,2004,9(3):369-388

推荐链接
down
wechat
bug