个人简介
曾获荣誉:
2020-04-01 当选: 湖南省芙蓉青年学者
2017-10-01 当选: 湖南省杰出青年基金
2016-10-01 当选: 湖南省普通高校青年骨干教师
2016-09-10 当选: 中南大学蔡田媗珠奖励金优秀教师奖
2020-09-10 当选: 中南大学茅以升科研奖励金
2010-10-01 当选: 上海市优秀博士学位论文
潘克家,男,湖南宁乡人,数学与统计学院副院长,湖南省“芙蓉青年学者”,湖南省杰出青年基金获得者,湖南省普通高校青年骨干教师,湖南省计算数学应用软件学会秘书长,中国地球物理学会地球电磁专业委员会委员,湖南省数学会理事,湖南省地球物理学会理事,湖南省一流本科专业建设点信息与计算科学专业负责人。
2009年7月毕业于复旦大学数学与统计学院,获得博士学位。2017年9月晋升为中南大学教授。长期从事计算数学与勘探地球物理学的交叉研究,科学出版社出版专著1部,现已在Surv Geophys, Geophys J Int, Geophysics,IEEE Trans Geosci Remote Sensing,《地球物理学报》等地学期刊,J Comput Phys、 Comput Methods Appl Mech Engrg、J Sci Comput、Nonlinearity、《中国科学》等数学期刊发表SCI论文60多篇(含2篇ESI高被引论文、2篇ESI热点论文),被国内外权威期刊论文引用709次,H指数为15。主持3项国家自然科学基金,以及国防基础科研核科学挑战专题,湖南省自然科学杰出青年基金等项目多项。长期为J Comput Appl Math、J Comput Phys、Appl Math Comput、Geophys J Int、Geophys Prospect等十多个SCI期刊审稿人。
课题组的主要研究方向有偏微分方程数值解及其应用、地球物理正反演。招收优秀硕士研究生、博士研究生(博士招生实行考核制)、博士后,欢迎数学、地球物理等相关专业的同学报考,也欢迎有兴趣做科研的本科生加入课题组。特别欢迎获得免试推荐资格的本科毕业生报考。
教育经历
[1] 2000.9-2004.6
中国石油大学(华东) | 信息与计算科学 | 学士学位 | 大学本科毕业
[2] 2004.9-2009.6
复旦大学 | 应用数学 | 博士学位 | 博士研究生毕业
工作经历
[1] 2017.10-至今
中南大学 | 数学与统计学院 | 教授
[2] 2012.10-2017.9
中南大学 | 数学与统计学院 | 副教授
[3] 2011.5-2014.3
中南大学 | 地球科学与信息物理学院 | 博士后
[4] 2015.3-2015.9
University of North Carolina at Charlotte | Department of Mathematics and Statistics | Visting Scholar
[5] 2009.7-2012.9
中南大学 | 数学与统计学院 | 讲师
科研项目
[1]非平衡辐射输运问题保物理特性的高效计算方法,国防基础科研核科学挑战专题课题,80万,主持,在研,国防科工局,潘克家
[2]基于矢量有限元和瀑布式多重网格法的大地电磁带地形三维并行正演研究,国家自然科学基金面上项目,63万,主持,在研,国家自然科学基金,潘克家
[3]基于GPU的CSAMT三维正演的并行外推多网格法研究,国家自然科学基金面上项目,85万,主持,在研,国家自然科学基金,潘克家
[4]外推瀑布式多网格法及其在地球物理学中的应用,湖南省杰出青年基金项目,30万,主持,在研,潘克家
[5]外推瀑布式多网格法及其在三维地电磁场计算中的应用,国家自然科学基金青年项目,25万,主持,结题,国家自然科学基金,潘克家
[6]基于棱边有限元的瀑布式多网格法及在三维大地电磁正演中的应用研究,中南大学创新驱动项目,50万,主持,在研,潘克家
[7]基于高阶紧致差分格式的并行外推瀑布式多网格法研究,湖南省自然科学基金青年项目,4万,主持,在研,湖南省自然科学基金,潘克家
[8]基于外推瀑布式多网格法的CSAMT三维反演研究,中国博士后科学基金特别资助项目,15万,主持,结题,中国博士后科学基金,潘克家
[9]外推多网格法在三维地电磁场计算中的应用研究,中国博士后科学基金面上项目,3万,主持,结题,中国博士后科学基金,潘克家
[10]基于外推瀑布式多网格法的快速电磁场计算方法研究,博士点新教师基金项目,4万,主持,结题,高等学校博士学科点专项科研基金,潘克家
著作成果
[1]直流电阻率有限单元法及进展[著作].王飞燕,邱乐稳,潘克家,汤井田,任政勇,科学出版社,2020
教学成果
[1]中南大学教学成果奖(以“算法理论与实现”为教学核心提高信息与计算 科学专业人才竞争力),2019-03-25
[2]国家精品在线开放课程(科学计算与数学建模),2019-01-01
获奖信息
[1]中南大学蔡田媗珠奖励金优秀教师奖(2016)|2016
[2]中南大学茅以升科研奖励金(2020)|2020
[3]湖南省“芙蓉青年学者”(2020)|2020
[4]湖南省杰出青年基金获得者(2017)
[5]湖南省普通高校青年骨干教师(2016)
[6]上海市优秀博士学位论文(2010)
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Mingyang Pan,Kejia Pan.Energy stable finite element method for an electrohydrodynamic model with variable density:Journal of Computational Physics,2020,424:109870
[2]Xi Li,Tongmao Li,Kejia Pan.Efficient energy stable scheme for volume-conserved phase-field elastic bending energy model of lipid vesicles:Journal of Computational and Applied Mathematics,2020,385:113177
[3]Chuanjun Chen,Kejia Pan.Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals and viscous fluids:Applied Numerical Mathematics,2020,158:1–21
[4]M. Riaz Khan,Kejia Pana,Arif Ullah Khan,Naeem Ullah.Comparative study on heat transfer in CNTs-water nanofluid over a curved surface.[J]:International Communications in Heat and Mass Transfer,116:104707(1-7)
[5]Qifeng Zhang,Xiaoman Lin,Kejia Pan,Yunzhu Ren.Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation.[J]:Computers and Mathematics with Applications,80(5):1201–1220
[6]Ming Li,Zhoushun Zheng,Kejia Pan,Xiaoqiang Yue.An Efficient Newton Multiscale Multigrid Method for 2D Semilinear Poisson Equations.[J]:East Asian J. Appl. Math.,2020,10(3):620-634
[7]Kejia Pan,Junyi Xia,Dongdong He.A three-level linearized difference scheme for nonlinear Schrodinger equation with absorbing boundary conditions.[J]:Appl. Numer. Math.,2020,156:32-49
[8]Bao-Lin Zhang , Luhua Cheng , Kejia Pan, Xian-Ming Zhang.Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality.[J]:Appl. Math. Comput.,2020,380:125254
[9]Jun Zhang, Chuanjun Chen, Xiaofeng Yang, Kejia Pan.Efficient numerical scheme for a penalized Allen–Cahn type Ohta–Kawasaki phase-field model for diblock copolymers.[J]:J. Comput. Appl. Math.,2020,378:112905
[10]Mingyang Pan, Dongdong He, Kejia Pan.Unconditionally energy stable schemes for an electrohydrodynamic model of charge transport in dielectric liquids.[J]:Comput. Methods Appl. Mech. Engrg.,2020,361:112817
[11]Kejia Pan , Xiaoxin Wu , Xiaoqiang Yue, Runxin Ni.A spatial sixth-order TVD-CCD method for solving multidimensional coupled Burgers' equations.[J]:Comput. Appl. Math.,2020,39:76
[12]M. RiazKhan, Kejia Pan, Arif Ullah Khan, S. Nadeem.Dual solutions for mixed convection flow of SiO2Al2O3/water hybrid nanofluid near the stagnation point over a curved surface.[J]:Physica A,2020,547:123959
[13]Dongdong He, Kejia Pan, Hongling Hu.A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation.[J]:Appl. Numer. Math.,2020,151:44–63
[14]Kejia Pan, Xianlin Jin , Dongdong He.Pointwise error estimates of a linearized difference scheme for strongly coupled fractional Ginzburg-Landau equations.[J]:Math. Methods Appl. Sci.,2020,43(2):512-535
[15]Li, J., Liu, J., Egbert, G. D., Liu, R., Guo, R., & Pan, K..An Efficient Preconditioner for 3-D Finite Difference Modeling of the Electromagnetic Diffusion Process in the Frequency Domain.[J]:IEEE Transactions on Geoscience and Remote Sensing,2020,58(1):500-509
[16]Jianli?Liu, Kejia?Pan, Jiahong?Wu.A class of large solutions to the supercritical surface quasi-geostrophic equation.[J]:Nonlinearity,2019,32:5049–5059
[17]Li, J., Liu, J., Egbert, G. D., Liu, R., Guo, R., & Pan, K..Corrections to “An Efficient Preconditioner for 3D Finite Difference Modeling of the Electromagnetic Diffusion Process in the Frequency Domain”.[J]:IEEE Transactions on Geoscience and Remote Sensing,2019,57(11):9512 - 9512
[18]Dongdong He, Kejia Pan*, Xiaoqiang Yue.A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson–Nernst–Planck System.[J]:J Sci Comput,2019,81:436-458
[19]Ming Li, Zhoushun Zheng, Kejia Pan*.Extrapolation multiscale multigrid method for solving 2D Poisson equation with sixth order compact scheme.[J]:J Appl Math Comput,2019,60:589-604
[20]Xiaoqiang Yue, Shi Shu, Xiaowen Xu, Weiping Bu, Kejia Pan*.Parallel-in-time multigrid for space–time finite element approximations of two-dimensional space-fractional diffusion equations.[J]:Comput Math Appl,2019,78:3471–3484
[21]Dongdong He, Kejia Pan*.Maximum norm error analysis of an unconditionally stable semi-implicit scheme for multi-dimensional Allen–Cahn equations.[J]:Numer Method Part D E,2019,35(3):955–975
[22]Wentao Cai, DongdongHe, Kejia Pan.A linearized energy–conservative finite element method for the nonlinear Schr?dinger equation with wave operator.[J]:Appl Numer Math,2019,140:183-198
[23]Buyun Chen, Dongdong He, Kejia Pan.A CCD-ADI method for two-dimensional linear and nonlinear hyperbolic telegraph equations with variable coefficients.[J]:Int J Comput Math,2019,96(5):992-1004
[24]Chaojian Chen, Zhengyong Ren, Kejia Pan, Jingtian Tang, et al..Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders.[J]:Geophys J Int,2018,214(3):2115–2132
[25]Zhengyong Ren, Yiyuan Zhong, Chaojian Chen, Jingtian Tang, Kejia Pan.Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order.[J]:Geophysics,2018,83(1):G1-G13
[26]Qing Pan, Timon Rabczuk, Chong Chen, Guoliang Xu, Kejia Pan.Isogeometric analysis of minimal surfaces on the basis of extended Catmull–Clark subdivision:Comput. Method. Appl. M.,2018,337:128–149
[27]Buyun Chen, Dongdong He, Kejia Pan.A linearized CCD-ADI method for multi-dimensional coupled Burgers' equations:Numer. Math.-Theory. Me.,2018,11:299-320
[28]Dongdong He, Kejia Pan.A fifth-order combined compact difference scheme for the Stokes flow on the polar geometry:E Asian J Appl Math,2018,7:714-727
[29]Dongdong He, Kejia Pan*.An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation.[J]:Numer Algorithm,2018,79:899-925
[30]Hongling Hu, Zhengyong Ren, Dongdong He, Kejia Pan*.On the convergence of an extrapolation cascadic multigrid method for elliptic problems.[J]:Comput Math Appl,2017(74):759-771
[31]Dongdong He, Kejia Pan*.An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schr¨odinger equations with variable coefficients in two and three dimensions.[J]:Computer and Mathematics with Applications,2017,73(11):2360–2374
[32]Kejia Pan, Dongdong He, Hongling Hu, Zhengyong Ren*.A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems.[J]:J Comput Phys,2017,344:499-515
[33]Kejia Pan, Dongdong He*, Chuanmiao Chen.An extrapolation cascadic multigrid method for elliptic problems on reentrant domains.[J]:Advances in Applied Mathematics and Mechanics,2017,9:1347-1363
[34]Kejia Pan, Dongdong He*, Hongling Hu.An extrapolation cascadic multigrid method combined with a fourth-order compact scheme for 3D Poisson equation.[J]:Journal of Scientific Computing,2017,70(3):1180-1203
[35]Zhengyong Ren, Chaojian Chen, Kejia Pan*, et al..Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts.[J]:Surveys in Geophysics,2017,38:479-502
[36]Michael V. Klibanov, Loc H. Nguyen, Kejia Pan*.Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase information.[J]:Applied Numerical Mathematics,2016, 110:190-203
[37]潘克家, 汤井田, 杜华坤, 蔡志杰.轴对称地层中高分辨率阵列侧向测井的信赖域反演法.[J]:地球物理学报,2016,59:3310-3120
[38]Dongdong He, Kejia Pan*.An energy preserving finite difference scheme for the Poisson-Nernst-Planck system.[J]:Applied Mathematics and Computation,2016(287):214-223
[39]Dongdong He, Kejia Pan*.An order optimal regularization method for the Cauchy problem of a Laplace equation in an annulus domain.[J]:Applied Mathematical Modelling,2015,39:3063–3074
[40]Dongdong He, Kejia Pan.A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation.[J]:Applied Mathematics and Computation,2015,271:323-336
[41]胡宏伶, 肖晓, 潘克家, 汤井田, 谢维.基于局部加密等级网格的2.5维直流电法有限元模拟.[J]:中南大学学报自然科学版,2014,45:2259-2267
[42]Jianli Liu, Fenglun Wei, Kejia Pan*.A single exponential BKM type estimate for the 3D incompressible ideal MHD equations.[J]:Boundary Value Problems,2014,2014:96
[43]Hongling Hu, Chuanmiao Chen, Kejia Pan.Asymptotic expansions of finite element solutions to Robin problems in H3 and their application in extrapolation cascadic multigrid method.[J]:SCIENCE CHINA Mathematics,2014,57:687-698
[44]Kejia Pan, Jianli Liu.A parameter identification problem for spontaneous potential logging in heterogeneous formation.[J]:Journal of Inverse and Ill-Posed Problems,2014,22:357-373
[45]Kejia Pan, Jingtian Tang.2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method.[J]:Geophysical Journal International,2014,197:1459-1470
[46]Hongling Hu, Chuanmiao Chen, Kejia Pan.Time-extrapolation algorithm (TEA) for linear parabolic problems.[J]:Journal of Computational Mathematics,2014,32:183-194
[47]潘克家, 汤井田.2.5维直流电法正演中Fourier逆变换离散波数的最优化选取:中南大学学报自然科学版,2013,44:2819-2826
[48]潘克家, 王文娟, 汤井田, 谭永基.高分辨率阵列侧向测井的数学模型及有限元快速正演:地球物理学报,2013,56:3197-3211
[49]潘克家, 汤井田, 胡宏伶, 陈传淼.直流电阻率法2.5维正演的外推瀑布式多重网格法.[J]:地球物理学报,2012,55:2769-2778
[50]Jianli Liu, Kejia Pan*.Asymptotic behavior of global classical solutions to Goursat problem of quasilinear hyperbolic systems.[J]:Journal of Mathematical Analysis and Applications,2012,392:200-208
[51]潘克家, 汤井田, & 郑洲顺.Matlab 与 Fortran 混合编程之 DLL 实现方法.[J]:Computer Engineering and Applications,2011
[52]潘克家, 胡宏伶, 陈传淼, & 汤井田.外推瀑布式多网格法的 OpenMP 并行化.[J]:计算数学,2012:425-436
[53]潘克家, & 汤井田.单纯形上校正高斯-勒让德求积公式.[J]:Computer Engineering and Applications,2012:35
[54]潘克家, 汤井田, 胡宏伶, & 陈传淼.直流电阻率法 2.5 维正演的外推瀑布式多重网格法.[J]:地球物理学报,2012:2769-2778
[55]潘克家, 王文娟, 汤井田, & 谭永基.高分辨率阵列侧向测井的数学模型及有限元快速正演.[J]:地球物理学报,2013:3197-3211
[56]潘克家, & 汤井田.2.5 维直流电法正演中 Fourier 逆变换离散波数的最优化选取.[J]:中南大学学报 (自然科学版),2013
[57]潘克家, 胡宏伶, 汤井田, 陈传淼.外推瀑布式多网格法的OpenMP并行化.[J]:计算数学,2012,34:425-436
[58]Jianli Liu, Kejia Pan*.Global existence and asymptotic behavior of classical solutions of Goursat problem for diagonalizable quasilinear hyperbolic system.[J]:Boundary Value Problems,2012,2012:36
[59]Kejia Pan*,Yongji Tan, Hongling Hu.An interpolation matched interface and boundary method for elliptic interface problems.[J]:Journal of Computational and Applied Mathematics,2010,234:73-94
[60]潘克家, 谭永基.复杂地层中自然电位测井的高效数值模拟.[J]:石油地球物理勘探,2009,44:371-376
[61]王文娟, 潘克家, 曹俊兴, 谭永基.基于 Tikhonov 正则化的双频电磁波电导率成像反演.[J]:地球物理学报,2009,52:750-757
[62]Kejia Pan, Yongji Tan,Hongling Hu.Mathematical model and numerical method for SP log in heterogeneous formation.[J]:Applied Mathematics and Mechanics,2009,30:209-219
[63]潘克家, 王文娟, 谭永基, 曹俊兴.基于混合差分进化算法的地球物理线性反演.[J]:地球物理学报,2009,52:3083-3090
[64]潘克家, 谭永基, 王才经.自动识别油藏边界水侵量微分方程反演算法.[J]:石油学报,2008,29:747-751
[65]潘克家, 陈华, 谭永基.基于差分进化算法的核磁共振T2谱多指数反演.[J]:物理学报,2008,57:5956--5961