当前位置: X-MOL首页全球导师 国内导师 › 陈和柏

个人简介

曾获荣誉: 福建省引进高层次人才,福州大学旗山学者 陈和柏博士,中南大学数学与统计学院教授。现从事微分方程与动力系统、非线性动力学的教学和研究。于2010年6月与2013年6月分别获得四川大学数学基地班专业学士学位与基础数学硕士学位;于2017年6月获得西南交通大学一般力学与力学基础专业博士学位。2017年7月至2019年6月,任福州大学数学与计算机科学学院副教授。在科研上,曾应邀赴英国帝国理工学院和诺丁汉大学等国内外大学进行学术访问。 其博士学位论文获得了西南交通大学优秀博士学位论文培育项目资助,并被评为西南交通大学优秀博士学位论文。2017年评为福州大学旗山学者。2019年获评为福建省高层次引进人才。近年来,在美国《J. Differential Equations》、《Physica D》、《Proccedings of the American Mathematical Society》,英国《Nonlinearity》、《J. Phys. A: Math. Theo.》及法国《Bulletin des Sciences Mathématiques》等国际重要学术期刊上以一作和通讯作者身份发表SCI学术论文40多篇。 教育经历 [1] 2013.9-2017.6 西南交通大学 | 一般力学与力学基础 | 博士学位 | 博士研究生毕业 [2] 2010.9-2013.6 四川大学 | 基础数学 | 硕士学位 | 硕士研究生毕业 [3] 2006.9-2010.6 四川大学 | 数学基地班 | 学士学位 | 大学本科毕业 工作经历 [1] 2017.7-2019.7 福州大学 | 数学与计算机科学学院 | 副教授 科研项目 [1]关于多项式Lienard 系统的全局分岔与Hilbert第16问题,在研,国家自然科学基金委,陈和柏 [2]湖湘文化面向“一带一路”国家传播效果测评及精准化走出去研究,在研,湖南省哲学社会科学规划基金办 [3]媒介融合背景下版权运营及保护研究,在研,中央高校基本科研业务费专项项目 [4]媒体融合背景下数字出版人才培养模式改革与创新研究,结项,中南大学

研究领域

关于光滑及非光滑微分方程的定性理论与分岔理论的研究。

研究兴趣为光滑及非光滑系统在全局参数下的全局动力学。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1].The saddle case of a nonsmooth Rayleigh–Duffing oscillator.[J]:International Journal of Non-Linear Mechanics,2020,129 [2]Chen Hebai,Zhu Huaiping*.Global bifurcation studies of a cubic Liénard system.[J]:Journal of Mathematical Analysis and Applications,2020 [3]Li Tao,Chen Hebai,Chen Xingwu.Crossing periodic orbits of nonsmooth Lienard systems and applications.[J].UK:Nonlinearity,33(11):5817-5838 [4]Miao Pengcheng,Li Denghui,Chen Hebai*,Yue Yuan,Xie Jianhua.Generalized Hopf bifurcation of a non-smooth railway wheelset system.[J]:Nonlinear Dynamics,2020,100:3277-3293 [5]Jia Man,陈海波,Chen Hebai*.Bifurcation diagram and global phase portraits of a family of quadratic vector fields in class I.[J]:Qualitative Theory of Dynamical Systems,2020,19:64-1-22 [6]陈和柏,Tang Yilei.Global dynamics of the Josephson equation in TS^1.[J]:Journal of Differential Equations,2020,269(6):4884-4913 [7]Chen Hebai, Wei Fengying, Xia Yong-Hui*, Xiao Dongmei.Global dynamics of an asymmetry piecewise linear differential system: Theory and applications.[J].France:Bulletin des Sciences Mathématiques,2020,160:102858-1-43 [8]Chen Haibo, Chen Hebai*.Global dynamics of a Wilson polynomial Lienard equation.[J]:Proccedings of the American Mathematical Society,148(11):4769-4780 [9]Chen Xiaofeng, Chen Hebai*.Complete bifurcation diagram and global phase portraits of Lienard differential equations of degree four.[J].USA:Journal of Mathematical Analysis and Applications,2020,485:123802 [10]Chen Hebai, Chen Xingwu*.Dynamical analysis of a cubic Lienard system with global parameters: (III).[J]:Nonlinearity,2020,33(4):1443-1465 [11]Chen Hebai, Tang Yilei*.A proof of Euzebio-Pazim-Ponce's conjectures for a degenerate planar piecewise linear differential system with three zones.[J]:Physica D,2020,401:1-22 [12]Liu Lingling, Ding Kewei, Chen Hebai*.Dynamical analysis of a Lotka-Volterra learning-process model.[J]:Journal of Applied Analysis and Computation,2019,9(5):1-17 [13]Chen Hebai, Tang Yilei*.An oscillator with two discontinuous lines and Van der Pol damping.[J]:Bulletin des Sciences Mathématiques,2020,161:102867-1-38 [14]Chen Hebai*, Llibre Jamue, Tang Yilei.Centers of piecewise quasi-homogeneous systems.[J]:Discrete and Continuous Dynamical Systems-Series B,2019,24(12):6495-6509 [15]Chen Hebai, Tang Yilei*.Proof of Artes-Llibre-Valls's conjectures for the Higgins-Selkov and the Selkov systems.[J].ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA:JOURNAL OF DIFFERENTIAL EQUATIONS,2019,266(11):7638-7657 [16]Chen Hebai, Zou Lan*.How to control the immigration of infectious individuals for a region?.[J]:Nonlinear Analysis Series B: Real World Applicatio,2019,45:491-505 [17]Li Denghui, Chen Hebai*, Xie Jianhua.Smale Horseshoe in a Piecewise Smooth Map.[J].WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE:INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS,2019,29(4):1950051 [18]Chen Hebai, Tang Yilei*.At most two limit cycles in a piecewise linear differential system with three zones and asymmetry:Physica D,2019,386-387:23-30 [19]Chen Hebai, Han Maoan, Xia Yonghui*.Limit cycles of a Lienard system with symmetry allowing for discontinuity.[J]:Journal of Mathematical Analysis and Applications,2018,468:799-816 [20]Chen Hebai*, Duan Jinqiao.Bounded and unbounded solutions of a discontinuous oscillator at resonance.[J]:International Journal of Non-Linear Mechanics,2018,105:146-151 [21]Chen Hebai, Duan Sen, Tang Yilei*, Xie Jianhua.Global dynamics of a mechanical system with fry friction.[J]:Journal of Differential Equations,2018,265:5490-5519 [22]Chen Hebai, Huang Deqing*, Jian Yupei.The saddle case of Rayleigh-Duffing oscillators.[J]:Nonlinear Dynamics,2018,93:2283-2300 [23]Chen Hebai, Chen Xingwu*.Global phase portraits of a degenerate Bogdanov-Takens system with symmetry: (II).[J]:Discrete and Continuous Dynamical Systems-Series,2018,23:4141-4170 [24]Chen Hebai, Llibre Jamue*, Tang Yilei.Global study of SD oscillator.[J]:Nonlinear Dynamics,2018,91:1755-1777 [25]Li Denghui*, Chen Hebai, Xie Jianhua, Zhang Jiye.Sinai-Ruelle-Bowen measure for normal form map of grazing bifurcation of impact oscillators.[J]:Journal of Physics A: Mathematical and Theoretical,2017,50:438-454 [26]Chen Hebai*, Cao Zhenbang, Li Denghui, Xie Jianhua.Global analysis on a discontinuous dynamical system.[J]:International Journal of Bifurcation and Chaos,2017,27:1750078 [27]Chen Hebai*, Li Denghui, Xie Jianhua, Yue Yuan.Limit cycles in planar continuous piecewise linear systems.[J]:Communications in Nonlinear Science and Numerical,2017,47:438-454 [28]Chen Hebai, Chen Xingwu*, Xie Jianhua.Global phase portraits of a degenerate Bogdanov-Takens system with symmetry.[J]:Discrete and Continuous Dynamical Systems-Series B,2017,22:1273-1293 [29]Chen Hebai*, Chen Xingwu.A proof of Wang–Kooij's conjectures for a cubic Liénard system with a cusp.[J]:Journal of Mathematical Analysis and Applications,2017,445:884-897 [30]Chen Hebai.Global dynamics of memristor oscillators.[J]:International Journal of Bifurcation and Chaos,2016,26:1650198 [31]Li Denghui*, Chen Hebai, Xie Jianhua.Statistical properties of the universal limit map of grazing bifurcations.[J]:Journal of Physics A: Mathematical and Theoretical,2016,49:355102 [32]Chen Hebai, Zou Lan*.Global study of Rayleigh-Duffing oscillators.[J]:Journal of Physics A: Mathematical and Theoretical,2016,49:165202 [33]Chen Hebai*, Xie Jianhua.Harmonic and subharmonic solutions of the SD oscillator.[J]:Nonlinear Dynamics,2016,84:2477-2486 [34]Chen Hebai.Global bifurcation for a class of Filippov system with symmetry.[J]:Qualitative Theory of Dynamical Systems,2016,15:349-365 [35]Chen Hebai.Global analysis on the discontinuous limit case of a smooth oscillator.[J]:International Journal of Bifurcation and Chaos,2016,26:1650061 [36]Chen Hebai*, Li Xuefang.Global phase portraits of memristor oscillators.[J]:International Journal of Bifurcation and Chaos,2014,2014:1450152 [37]Chen Hebai*, Xie Jianhua.The number of limit cycles of the FitzHugh nerve system.[J]:Quarterly of Applied Mathematics,2015,73:365-378 [38]Chen Hebai, Chen Xingwu*.Dynamical analysis of a cubic Lienard system with global parameters: (II).[J]:Nonlinearity,2016,29:1798–1826 [39]Chen Hebai, Chen Xingwu*.Dynamical analysis of a cubic Lienard system with global parameters.[J]:Nonlinearity,2015,28:3535-3562

推荐链接
down
wechat
bug