当前位置: X-MOL首页全球导师 海外导师 › Helquist, Paul

个人简介

1984-present Professor, University of Notre Dame 1984-1986 Professor, State University of New York at Stony Brook 1980-1984 Associate Professor, State University of New York at Stony Brook 1974-1980 Assistant Professor, Department of Chemistry, State University of New York at Stony Brook 1973-1974 Postdoctoral Fellow, Harvard University 1972 Ph.D. in Organic Chemistry, Cornell University 1969 B.A. in Chemistry, University of Minnesota, Duluth Award: 2011-2012 Tage Erlander Guest Professor of the Swedish National Research Council, University of Gothenburg and University of Stockholm 2010 Faculty Award, University of Notre Dame 2009 Joyce Award for Excellence in Undergraduate Teaching 2005, 2002 Kaneb Teaching Award

研究领域

Organic Chemistry

Professor Helquist's research group is concerned with two broad areas: (1) the development of new methods in synthetic organic chemistry, including the preparation, structural study, and applications of new transition metal organometallic complexes as catalysts and reagents for asymmetric synthesis; and (2) the structure, synthesis, mechanism of action, and pharmaceutical development of biologically active compounds including antibiotics and antitumor agents, many of which have their origins as natural products. Often we take advantage of the interface between these two areas by applying some of our new methods, reagents, and catalysts in the synthesis of targeted natural products. We have developed numerous synthetic methods employing iron, nickel, copper, rhodium, palladium, titanium, zirconium, magnesium, lithium, zinc, and samarium compounds as reagents or catalysts. We have employed many of these methods in the synthesis of complex natural products. Coupled with this organometallic work is the rational design of chiral transition metal catalysts through use of molecular mechanics computational techniques. Through use of this approach, we have succeeded in obtaining metal complexes that can be employed in metal-catalyzed reactions to give products with >99% enantiomeric excess. In the area of total synthesis, our laboratory studies compounds that show promise of being developed into clinically useful antibiotics and anti-cancer agents. For several of the compounds that we study, the full structures have not been determined previously, and we therefore begin our work by employing high-field NMR and molecular mechanics computational techniques to determine the full, three-dimensional structures of these compounds. In the course of then pursuing total syntheses of these compounds, we often develop new methods. With synthetic materials in hand, we study structure-activity relationships and mechanisms of action. We employ this knowledge to obtain modified forms of the natural products to improve therapeutic properties, leading to the development of new pharmaceutical products. Some of our most recent derivatives are highly potent antibiotics that are active against a range of bacteria that are resistant to other classes of antibiotics.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Grigalunas, M.; Ankner, T.; Norrby, P.O.; Wiest, O.; Helquist, P. "Palladium-Catalyzed Alkenylation of Ketone Enolates under Mild Conditions." Org. Lett. 2014, 16 (15), 3970-3973. Lime, E.; Lundhohn, M.D.; Forbes, A.; Wiest, O.; Helquist, P.; Norrby, P.O. "Stereoselectivity in Asymmetric Catalysis: The Case of Ruthenium-Catalyzed Ketone Hydrogenation." J. Chem. Theory Comput. 2014, 10 (6), 2427-2435. Bourbon, P.; Peng, Q.; Ferraudi, G.; Stauffacher, C.; Wiest, O.; Helquist, P. "Development of carbamate-tethered coumrarins as phototriggers for caged nicotinamide." Bioorg. Med. Chem. Lett. 2013, 23 (23), 6321-6324. Helquist, P.; Maxfield, F.R.; Wiech, N.L. Wiest, O. "Treatment of Niemann-Pick Type C Disease by Histone Deacetylase Inhibitors." Neurotherapeutics 2013, 10 (4), 688-697. Bourbon, P.; Peng, Q.; Ferraudi, G.; Stauffacher, C.; Wiest, O.; Helquist, P. "Synthesis and photochemical behavior of coumarin-caged cholesterol." Bioorg. Med. Chem. Lett. 2013, 23 (7), 2162-2165. Ankner, T.; Cosner, C.C.; Helquist, P. "Palladium- and Nickel-Catalyzed Alkenylation of Enolates." Chem-Eur. J. 2013, 19 (6). 1858-1871.

推荐链接
down
wechat
bug