当前位置: X-MOL首页全球导师 海外导师 › Goodson, Holly

个人简介

2014-present Professor, University of Notre Dame 2006-2014 Associate Professor, University of Notre Dame 2000-2006 Assistant Professor, University of Notre Dame 1995-1999 Postdoctoral Fellow, University of Geneva, Switzerland 1996 Ph.D. in Biochemistry, Stanford University 1988 A.B. in Molecular Biology, Princeton University Award: 2012 Thomas P. Madden Award for Exceptional Teaching of First Year Students 2012 Joyce Award for Excellence in Undergraduate Teaching 2008-2010 Elected member, American Society for Cell Biology National Council 1996-1999 Helen Hay Whitney Foundation Postdoctoral Fellowship 1995-1996 EMBO Postdoctoral Fellowship 1988-1993 National Science Foundation Predoctoral Fellowship

研究领域

Biochemistry

The Goodson laboratory uses multifaceted approaches including biochemistry, molecular biology, and computational biology to address cell biological questions. We focus on the microtubule cytoskeleton – the dynamic network of protein fibers that pulls the chromosomes apart at mitosis, acts as "railroad tracks" for intracellular transport, and organizes the cytoplasm. Questions that interest us include: how does this network assemble? What governs its dynamic turnover? How do other parts of the cell (organelles, chromosomes, the cell cortex) interact with microtubules? To answer these questions we use a combination of biochemistry, molecular biology, quantitative microscopy, and (in collaboration with applied mathematician Mark Alber) computational models of microtubule dynamics. Topics of particular interest include microtubule plus-end tracking proteins (+TIPs), a network of diverse proteins that dynamically track growing microtubule plus ends, as well as the disease-associated proteins Tau (Alzheimer's) and stathmin (cancer). A second long-term interest in the Goodson laboratory is molecular evolution. While establishing the history of protein families is an important goal in itself, our primary interest has been in using the history of a protein family to help understand how its members work now. We use nature’s mutagenesis (the set of related sequences present in the genome databases) and combine it with bioinformatics techniques such as homology modeling to perform structure/function analysis. Recently we have taken advantage of unique continuous culture systems developed for a biosensor project to begin a new project studying the process of evolution in vitro and in silico.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Gupta, K.K.; Alberico, E.O.; Nathke, I.S.; Goodson, H.V. "Promoting microtubule assembly: A hypothesis for the functional significance of the plus TIP network." Bioessays 2014, 36 (9), 818-826. Gupta, K.K.; Li, C.; Duan, A.R.; Alber, M.S.; Goodson, H.V. "Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin."’ P. Natl. Acad. Sci. USA 2013, 110(51), 20449-20454. Alberico, E.O.; Lyons, D.F.; Murphy, R.J.; Philip, J.T.; Duan, A.R.; Correia, J.J.; Goodson, H.V. "Biochemical evidence that human EB1 does not bind preferentially to the microtubule seam." Cytoskeleton 2013, 70 (6), 317-327. Duan, A.R.; Goodson, H.V. "Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro." Mol. Biol. Cell 2012, 23 (24), 4796-4806. Margolin, G.; Gregoretti, I.V.; Cickovski, T.M.; Li, C.L.; Shi, W.; Alber, M.S.; Goodson, H.V. "The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model." Mol. Biol. Cell, 2012, 23 (4), 642-656. Gregoretti, I.V.; Lee, Y.M.; Goodson, H.V. "Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis." J. Mol. Biol. 2004, 338 (1), 17-31.

推荐链接
down
wechat
bug