近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
主要英文期刊论文
[26] Liu, Q L., Liu, W K., Tang, J B., Deng, M., Liu, Y L., 2019. Two-stage permutation tests for determining homogeneity within spatial cluster. International Journal of Geographical Information Science, Accepted.
[25] Liu,Q L., Liu, W K., Tang, J B., Deng, M., Liu, Y L., 2019. Permutation-test-based clustering method for detection of dynamic patterns in spatio-temporal datasets. Computers, Environment and Urban Systems, Accepted.
[24] Cai, J N.,Deng, M., Liu, Q L*.,et al., 2018. Nonparametric Significance Test for Discovery of Network-Constrained Spatial Co-location Patterns.Geographical Analysis, Accepted.
[23] Cai, J N., Liu, Q L*.,Deng, M., Tang, J B., He, M. 2017. Adaptive detection of statistically significant regional spatial co-location patterns . Computers, Environment and Urban Systems, 10.1016/j.compenvurbsys.2017.10.003.
[22] Li, Z L., Liu, Q L*.,Tang, J B., Deng, M. 2017. An adaptive method for clustering of spatio-temporal events . Transactions in GIS, DOI:10.1111/tgis.12312.
[21] Deng, M., Yang, W T., Liu, Q L*., Jin, R., Xu, F., Zhang, Y.F. 2017. Heterogeneous Space–Time Artificial Neural Networks for Space–Time Series Prediction . Transactions in GIS, DOI:10.1111/tgis.12302
[20] Deng, M., Cai, J N.,Liu, Q L*., He, Z J., Tang, J B. 2017. Multi-level method for discovery of regional spatial co-location patterns. International Journal of Geographical Information Science, 31(9): 1846-1870.
[19] Deng, M., Yang, W T.,Liu, Q L.2017. Geographically weighted extreme learning machine-a method for space-time prediction. Geographical Analysis, DOI: 10.1111/gean.12127.
[18] Deng, M., Tang, J B., Liu, Q L*., Wu, F. 2017. Recognizing building groups for generalization: a comparative study. Cartography and Geographic Information Science, DOI: 10.1080/15230406.2017.1302821
[17] Deng, M., Yang, W T., Liu, Q L., Zhang, Y F. 2017. A divide-and-conquer method for space–time series prediction. Journal of Geographical Systems, DOI:10.1007/s10109-016-0241-y.
[16] Deng, M., He, Z J., Liu, Q L*., Cai, J N., Tang, J B. 2017. Multi-scale appraoch to mining significant spatial co-location patterns . Transactions in GIS, 21: 1023-1039.
[15] Shi, Y., Deng, M., Yang, X X., Liu, Q L. 2016. Adaptive detection of spatial point outliers using multi-level constrained Delaunay triangulation. Computers, Environment and Urban Systems,56: 164-183
[14] Shi, Y., Deng, M., Yang, X X., Liu, Q L. 2016. A framework for discovering evolving domain related spatio-temporal patterns in Twitter. ISPRS International Journal of Geo-information, 5(193), DOI: doi:10.3390/ijgi5100193.
[13] Deng, M., Fan, Z D., Liu, Q L*., Gong, J Y. 2016. A hybrid method for interpolating missing data in heterogeneous spatio-temporal datasets. ISPRS International Journal of Geo-Information, 5,13; DOI: 10.3390/ijgi5020013.
[12] Shi, Y., Deng, M., Yang, X X., Liu, Q L., 2015. A spatial anomaly points and regions detection method using multi-constrained graphs and local densities. Transaction in GIS, DOI: 10.1111/tgis.12208
[11] Ma, L B., Deng, M., Liu, Q L. 2015. Modeling spatio temporal topological relationships between moving object trajectories along road networks based on region connection calculus. Cartography and Geographic Information Science, DOI: http://dx.doi.org/10.1080
[10] Liu, Q L., Li, Z L., Deng, M. 2015. Modeling the effect of scale on clustering of spatial points. Computers, Environment and Urban Systems, 52:81-92.
[9] Liu, Q L., Tang, J B., Deng, M., Shi, Y. 2015. An iterative detection and removal method for detecting spatial clusters of different densities, Transaction in GIS, 19(1):82-106.
[8] Liu, Q L., Deng, M., Bi, J T., Yang, W T. 2014. A novel method for discovering spatio-temporal clusters of different sizes, shapes, and densities in the presence of noise, International Journal of Digital Earth, 7(2): 138-157.
[7] Liu, Q L., Deng, M., Shi, Y. 2013. Adaptive spatial clustering in presence of obstacles and facilitators, Computers & Geosciences, 56: 104-118.
[6] Deng, M., Liu, Q L*., Wang, J Q. 2013. A general method of spatio-temporal clustering analysis, Science China Information Sciences, 56: 1-14.
[5] Liu, Q L., Deng, M., Wang, J Q., Shi Y. 2012. A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity, Computers & Geosciences, 46: 296-309.
[4] Deng M., Liu, Q.L*., Cheng T. 2011. An adaptive spatial clustering algorithm based on Delaunay triangulation, Computers, Environment and Urban Systems, 35, 320-332.
[3] Liu, Q L., Deng, M., Wang, J Q., et al. 2011. Spatio-temporal outliers detection within a space-time framework. Journal of Remote Sensing, 15(2): 457-465.
[2] Deng, M., Liu, Q L*., Li, G Q. 2010. Spatial outlier detection method based on spatial clustering. Journal of Remote Sensing, 14(5): 944-950.
[1] Deng, M., Liu, Q L*., Li, G Q. 2010. A field -theory based spatial clustering method. Journal of Remote Sensing, 14(4): 694-702.
主要中文期刊论文
[11] 刘文凯, 刘启亮*, 蔡建南. 2018. 自然邻域支持下的空间同位模式挖掘方法. 测绘学报, 录用待刊
[10] 李志林, 刘启亮*, 唐建波. 2017. 尺度驱动的空间聚类理论. 测绘学报, 46(10): 1534-1548
[9] 何占军, 刘启亮*, 邓敏, 蔡建南. 2016. 显著空间同位模式的多尺度挖掘方法. 测绘学报, 45(11):1335-1341.
[8] 李志林, 刘启亮, 高培超. 2016. 地图信息论:从狭义到广义的发展回顾. 测绘学报, 45(7):757-767.
[7] 唐建波, 刘启亮*, 邓敏等. 2016. 空间层次聚类显著性判别的重排检验方法. 测绘学报, 45(2):233- 240.
[6] 蔡建南, 刘启亮*, 邓敏等. 2016. 多层次空间同位模式自适应挖掘方法. 测绘学报, 45(4):475- 485.
[5] 邓敏,刘启亮*, 王佳璆等.2012. 时空聚类分析的普适性方法. 中国科学(信息科学), 42(1):111- 124.
[4] 刘启亮, 邓敏, 石岩, 彭东亮. 2011. 一种基于多约束的空间聚类方法. 测绘学报, 40(4):509- 516.
[3] 刘启亮, 邓敏, 王佳璆等. 2011. 时空一体化框架下的时空异常探测. 遥感学报, 15(3):466- 474.
[2] 邓敏, 刘启亮*, 李光强. 2010. 采用聚类技术探测空间异常. 遥感学报, 14(5):951- 958.
[1] 邓敏, 刘启亮*, 李光强, 程涛. 2010. 基于场论的空间聚类算法. 遥感学报, 14(4):703- 709.