个人简介
安徽肥西人。
1998年毕业于安徽大学应用物理系理论物理专业,获硕士学位,
2001年毕业于中国科学技术大学天文与应用物理系凝聚态物理专业,获博士学位.
浙江师范大学物理学科负责人,二级教授、博士生导师,2013年入选教育部新世纪优秀人才,2018年入选浙江省万人计划科技创新领军人才。先后在安徽大学、中国科学技术大学攻读本科、硕、博士学位。2001年-2007年在德国乌尔姆大学、意大利高等师范学院开展博士后研究工作。2007年起在浙江师范大学工作,任双龙特聘教授。曾赴西班牙Basque国立大学、意大利国际理论物理中心、美国密苏里-哥伦比亚大学等国外高校、研究机构访问,是国际理论物理中心协联成员。长期从事凝聚态, 低维冷原子物理方面研究工作。发表论文60余篇, 其中以第一、通讯作者在《Phys. Rev. Lett.》、《Phys. Rev. A /B/E》上发表论文近40篇, 他引700余次, 主持国家自然科学基金项目5项, 参与国家自然科学重点基金项目1项。
指导学生:
本人现在正指导多名名研究生进行系统的科学研究, 多名本科毕业生进行本科设计, 同时我正组织和指导多名低年级本科生开始科研, 培养他们的科研兴趣, 科研热情和研究问题的能力。其中有本科生在一维含时密度泛函理论上的文章发表在物理类二区Top期刊Phys. Rev. B上;关于相分离的文章发表在物理类二区期刊Phys. Rev. A上。
已培养的硕士生中有1人在英国伦敦城市学院, 1人在德国海德堡大学, 其他5人在国内攻读博士学位。
工作经历
2017.7 -- 2017.8
芬兰Aalto大学 > 访问学者
2015.7 -- 2015.9
澳大利亚Swinburne技术大学
访问学者
2014.7 -- 2014.9
伊朗德黑兰基础科学研究院, Isfahan科技大学,Institute for Advanced Studies in Basic Sciences(IASBS)
访问学者
2013.7 -- 2013.9
国际理论物理中心
访问学者
2012.3 -- 2012.4
意大利高等师范学院
访问学者, 与Marco Polini教授合作
2012.1 -- 2012.3
西班牙Basque County 大学
访问学者, 与Ilya Tokatly和Stefan Kurth教授合作
2008.2 -- 2009.1
美国密苏里-哥伦比亚大学天文与应用物理系
访问学者
2007.3 -- 至今
浙江师范大学物理系
As a Professor
2005.7 -- 2005.8
国际理论物理中心
访问学者
2004.9 -- 2007.3
意大利高等师范学院
研究助理,与 Mario P. Tosi 教授合作
教育经历
2001.7 -- 2004.9
德国乌尔姆大学 > 数学与物理系 > 博士后
与Wolfgang Wonneberger教授合作
1998.7 -- 2001.6
中国科学技术大学基础物理中心 > Condensed Matter Physics > 博士学位 > 博士研究生毕业
导师:汪克林教授
1995.7 -- 1998.6
安徽大学 > 物理系 > 硕士学位 > 硕士研究生毕业
导师: 黄效吾教授, 杜宜瑾教授
著作成果
Linear Continuum Mechanics for Quantum Many-Body Systems
科研项目
教育部新世纪优秀人才支持计划项目-2016-12-08
国家自然基金项目-2017-12-08, 低维费米冷原子体系中的s-波拓扑超流和无序效应研究
国家自然基金项目-2016-12-08, 已结题, 低维费米冷原子气的相分离现象研究
浙江省杰出青年科学基金项目-2014-12-08, 已结题, 有限温度下的低维冷原子性质研究
国家自然基金项目-2012-12-08, 已结题, 二维冷原子系统,石墨单层及其Kohn-Sham-Dirac密度泛函理论在其中的应用
国家自然基金项目-2010-12-08, 已结题, 准一维受限冷费米原子气的奇异量子相变和量子输运性质的研究
国家自然科学基金对外交流与合作项目-2009-03-08, 已结题, 一维费米原子气中的自旋拖曳和自旋电荷分离的含时流密度泛函研究
研究领域
量子多体动力学研究
低维强关联系统的基态和激发研究
低维无序和拓扑研究
密度泛函理论研究及其在一维强关联模型系统中的应用
低维受限冷原子物理研究
1. 低维费米气体的量子特性: 研究在粒子在维度减小的情况下, 由于量子涨落的增强, 费米子配对, 外加势场, 组成粒子的组分等不同因素所导致的奇异量子相.
2. 受限费米冷原子气的密度泛函研究均匀的低维相互作用体系很多情况下可严格可解 (如利用Bethe-Ansatz技术, Bosonization等), 那么对于非均匀体系往往可以借助于这些信息, 利用密度泛函理论来求解. 这种思想常见于模型体系中的密度泛函理论. 相关的例子可见于密度泛函理论在非均匀Hubbard模型, 非均匀Lieb-Wu模型, Anderson模型和玻色-Fermi混合体系中的应用. 同样的思想可用于处理无序问题, 有限温度效应, 也可以讨论各种动力学问题.
3. 低维强关联体系的数值研究: 通过严格对角化和数值重整化群等方法对低维体系的基态特别是关联函数等进行讨论.
4. 低维强关联体系的激发研究: 研究低能激发如自旋-电荷分
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Predicting large-Chern-number phases in a shaken optical dice lattice.Phys. Rev. A 101, 043620 (2020)
Investigating many-body mobility edges in isolated quantum systems.Phys. Rev. B 99, 165137 (2019)
Thermal rectification and heat amplification in a nonequilibrium V-type three-level system.Phys. Rev. E 99, 042102 (2019)
Critical behavior of order parameter at the nonequilibrium phase transition of the Ising model.J. Phys.: Condens. Matter 31, 075801 (2019)
Fulde-Ferrell-Larkin-Ovchinnikov pairing states of a polarized dipolar Fermi gas.Phys. Rev. A 98, 023631 (2018)
Zeros of Loschmidt echo in the presence of Anderson localization.Phys. Rev. A 97, 033624 (2018)
Connecting dynamical quantum phase transitions and topological steady-state transitions by tuning the energy gap.Phys. Rev. A 97, 023627 (2018)
Phase diagram of a generalized off-diagonal Aubry-Andre model with p-wave pairing.J. Phys. B 51, 025301 (2018)
Almost mobility edges and existence of critical regions in one-dimensional quasiperiodic lattices.Eur. Phys. J. B 90, 215 (2017)
Localization and mobility edges in the off-diagonal quasiperiodic model with slowly varying potentials.Phys. Lett. A 381, 3683 (2017)
Dynamical properties of the Rabi model.J. Phys. A: Math. Theor. 50, 074004 (2017)
Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice.Phys. Rev. B 95, 184201 (2017)
Phase diagram of a non-Abelian Aubry-Andre-Harper model with p-wave superfluidity.Phys. Rev. B.2016,93(104504)
Topological phase transition in the quench dynamics of a one-dimensional Fermi gas.New J. Phys..2015,17(013029)
Three-component topological superfluid in one-dimensional Fermi gases with spin-orbit coupling.Phys. Rev. A.2014,90(023619)
Effect of incommensurate potential on the resonant tunneling through Majorana bound states on the topological superconductor chains.Eur. Phys. J. B.2014,87(164)
Randomly fluctuating potential-controlled multistable resonant tunneling current through a quantum dot.EPL.2014,105(37004)
Momentum distribution functions in ensembles: The inequivalence of microcannonical and canonical ensembles in a finite ultracold system.Phys. Rev. E.2013,88(022113)
H. Hu.Collective modes of a one-dimensional trapped atomic Bose gas at finite temperatures.Phys. Rev. A.2013,87(023628)
Component separation of two-component fermion clouds in a spin-dependent external potential by spin-density-functional theory.Phys. Rev. A.2013,87(023628)
Wigner crystal versus fermionization for one-dimensional Hubbard models with and without long-range interactions.J. Phys.: Condens. Matter.2013,25(055601)
Lattice density functional theory at finite temperature with strongly density-dependent exchange-correlation potentials.Phys. Rev. B.2012,86(235139)
The demixing of the two-component fermions in optical lattices under a spin-dependent external potential.Phys. Rev. A.2012,86(065602)
Ground-state phases of interacting Fermi gases in disordered one-dimensional lattices.J. Phys. B.2012,45(225304)
Gao Xianlong.2k_F-Friedel to 4k_F-Wigner oscillations in one-dimensional Fermi gases under confinement.Phys. Rev. A.2012,86(023616)
Absence of Wigner molecules in one-dimensional few-fermion systems with short-range interactions.Phys. Rev. B.2012,86(075110)
Pure Fulde-Ferrell-Larkin-Ovchinnikov state in optical lattices.Phys. Rev. B.2012,85(134203)
The effect of speckle disorder on a spin-polarized Fermi gas under harmonic confinement in one dimension.J. Phys. B.2011,44(215302)
Ground-state properties of the one-dimensional attractive Hubbard model with confinement: A comparative study.Phys. Rev. B.2010,82(014202)
Continuum Mechanics for Quantum Many-Body Systems: The Linear Response Regime.Phys. Rev. B.2010,81(195106)
Double occupancies in confined attractive fermions on optical lattices.Phys. Rev. A.2010,81(045602)
Effects of interaction and polarization on spin-charge separation: A time-dependent spin-density-functional theory study.Phys. Rev. B.2010,81(104306)
Phase separation in optical lattices in a spin-dependent external potential.Phys. Rev. A.2010,81(013628)
Linear Continuum Mechanics for Quantum Many-Body Systems.Phys. Rev. Lett..2009,103(086401)
Effect of Disorder on the Interacting Fermi Gases in a One-dimensional Optical Lattice.Int. J. Mod. Phys. B.2008,22(4500)
Time-Dependent Current-Density-Functional Theory of Spin-Charge Separation and Spin Drag in One-Dimensional Ultracold Fermi Gases.Phys. Rev. Lett..2008,101(206402)
Effects of disorder on atomic density waves and spin-singlet dimers in one-dimensional optical lattices.Phys. Rev. B.2008,78(085108)
Spin-density-functional theory for imbalanced interacting Fermi gases in highly elongated harmonic traps.Phys. Rev. A.2008,77(033604)
Collective excitations in one-dimensional ultracold Fermi gases: Comparative study.Phys. Rev. B.2008,78(195109)
Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas.Phys. Rev. Lett..2007,98(030404)
Density-functional theory of inhomogeneous electron liquids in thin quantum wires.Eur. Phys. J. B.2007,56(127)
Emergence of Wigner molecules in one-dimensional systems of repulsive fermions under harmonic confinement.Phys. Rev. A.2007,75(015602)
Phase behaviors of strongly correlated Fermi gases in one-dimensional lattices.Laser Phys..2007,17(162)
Interacting Fermi gases in disordered one-dimensional lattices.Phys. Rev. B.2006,73(161103( R ))
Bethe ansatz density-functional theory of ultracold repulsive fermions in one-dimensional optical lattices.Phys. Rev. B.2006,73(165120)
Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps.Phys. Rev. A.2006,73(033609)
Phase theory and critical exponents for the Tomonaga-Luttinger model with harmonic confinement.J. Phys. B.2004,37(2363)
Friedel oscillations in a gas of interacting one-dimensional fermions confined in a harmonic trap.J. Phys. B.2004,37(S49)
Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap.Phys. Rev. A.2003,67(023610)
Two-component Fermi gas in a one-dimensional harmonic trap.Phys. Rev. A.2002,65(033610)
Ground state of a dissipative two-level system.Phys. Rev. B.2000,62(15579)
A-Hai Chen.Demixing of two-component fermions in optical lattices under a spin-dependent external potential..Physical Review.2012,Vol.86(No.6B):1-5
Ji-Hong Hu.Double occupancies in confined attractive fermions on optical lattices.Physical Review.2010,Vol.81(No.4):045602
Wang, Jing-Jing.The effect of speckle disorder on a spin-polarized Fermi gas under harmonic confinement in one dimension.Journal of Physics: B Atomic Molecular and Optical Physics.2011,Vol.44(No.21):215302-215309
Gao Xianlong.Effects of interaction and polarization on spin-charge separation: A time-dependent spin-density-functional theory study.Physical Review.2010,Vol.81(No.10):104306
A-Hai Chen.Phase separation in optical lattices in a spin-dependent external potential.Physical Review.2010,Vol.81(No.1):013628
量子点中电-声子系统的稳定性.安徽大学学报(自然科学版).1997,第21卷(第2期):34-37
费米相干态方法在杂质安德逊模型中的应用.中国科学技术大学学报.2000,第30卷(第5期):51-57
ION DYNAMICS DURING THE PARAMETRIC INSTABILITIES OF A LEFT-HAND POLARIZED ALFVEN WAVE IN A PROTON-ELECTRON-ALPHA PLASMA.Astrophysical Journal.2014,Vol.780(No.1)
Anisotropic grain growth with pore drag under applied loads..Materials Science and Engineering A.2005,Vol.412(No.1-2):271-278