个人简介
1. 基本信息
杨敏波,中科院数学研究所博士毕业,数学与计算机科学学院副院长,浙江省高校中青年学科带头人,浙江省数学会理事、浙江省青科协理事、美国数学评论评论员。
已培养10余位硕士、博士。其中多位研究生考取国内著名数学系博士,获得意大利奖学金攻读博士学位,获评省优秀博士学位论文。
2. 主持与参与科研项目情况
1.《非局域作用下非线性薛定谔方程解的分类》,国家自然科学基金委与英国皇家学会合作交流项目,2020.07--2022.06,主持
2.《具有非局域或强不定特性的非线性问题的变分和非变分方法》,国家自然科学基金面上项目,2020--2023,主持
3.《非局部微分方程的变分方法研究》,国家自然科学基金面上项目,2016--2019,主持
4.《非线性Choquard方程与Dirac方程的奇异扰动问题》,省自然科学基金项目,2015--2017,主持
5.《薛定鄂方程及其相关问题的变分方法研究》,国家自然科学基金青年项目,2012--2014,主持
6.《利用变分方法研究一类非局部薛定谔方程解的存在性》“Existencia de solucao para uma classe de Equacoes de Schrodinger nao locais via metodos variacionais”,巴西国家科学技术发展委员会CNPq项目,2013--2014,主持
7.《一类非线性椭圆方程正解与变号解的存在性与非存在性》Sobre Existenciae Na-Existencia de Solucos Positivas e Nodais para problemas elipticos na lineares, 巴西巴西利亚联邦区FAP-DF项目,2018,参与
8.《无穷维Hamiltion系统同宿轨的存在性与多解性问题研究》,省自然科学基金项目,2008--2010,主持
研究领域
Nonlinear Functional Analysis; Elliptic Partial Differential Equations
非线性分析与椭圆型偏微分方程。主要关注与研究非局域椭圆型偏微分方程(组)解的存在性、渐近行为与集中性质;非局域Lane-Emden方程及其相关问题解的分类;具有强不定变分结构的微分方程解的存在性与集中性。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
17. Y. Ding, F. Gao, Minbo Yang*, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity, accepted.
16. C. Alves, Minbo Yang, Existence and multiplicity of solutions for a class of indefinite variational problems,Communications in Analysis and Geometry,accepted
15. F. Gao, Edcarlos. Silva, Minbo Yang*, J. Zhou,Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinb., A , 150(20)2020 , 921--954.
14. Lele Du, Minbo Yang*, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. A, 2019, 39(10): 5847--5866.
13. Minbo Yang*, Carlos. A. Santos, Jiazheng Zhou, Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity, Commun.Contemp. Math., 2019,21 (5 ) 文献号: 1850026
12. Zifei Shen, Fashun Gao, Minbo Yang*, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A, 2018, 38(7): 3669-3695.
11. Fashun Gao, Minbo Yang*, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun.Contemp. Math., 20(2018),no. 4, 1750037, 22 pp.
10. Fashun Gao, Minbo Yang*, The Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61 (2018), no. 7,1219--1242.
9. Minbo Yang*, Semiclassical ground state solutions for a Choquard type equation in R^2 with critical exponential growth, ESAIM: Control, Optimisation and Calculus of Variations, 24 (2018), 177--209.
8. C. O. Alves, Fashun Gao; M. Squassina,Minbo Yang*, Singularly perturbed critical Choquard equations, J. Differential Equations, 263(2017), no. 7, 3943–3988.
7. C.O. Alves, A. Nobrega, Minbo Yang*, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), 48, 28 pp.
6. C.O. Alves, Minbo Yang, Existence of positive multi-bump solutions for a Schrodinger-Poisson system in R^3, Discrete Contin. Dyn. Syst. A. 36 (2016), 5881–5910.
5. Minbo Yang*, Concentration of Positive Ground State Solutions for Schrödinger–Maxwell Systems with Critical Growth. Adv. Nonlinear Stud. 16 (2016), 389--408.
4. C. O. Alves, Minbo Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinb. A ,146,(2016),23--58.
3. C. O. Alves, D. Cassani, C. Tarsi and Minbo Yang*, Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2, Journal of Differential Equations, 261 (2016), 1933–1972.
2. C. O. Alves, Minbo Yang*, Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differential Equations, 257 (2014), no. 11, 4133–4164.
1. Minbo Yang*, Yanheng Ding, Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in RN. Ann. Mat. Pura Appl. (4) 192 (2013), no. 5, 783–804.