当前位置: X-MOL首页全球导师 国内导师 › 王维凡

个人简介

王维凡,男,特聘教授,浙江师范大学校学术委员会副主任,基础数学-省重点学科负责人,数学研究所执行所长,中国数学会理事,中国工业与应用数学学会理事,中国组合数学与图论学会理事,中国运筹学会图论组合专业委员会委员,浙江省数学会副理事长。 1998年1月毕业于南京大学基础数学专业并获得博士学位,1998年12月至2000年12月在台湾中央研究院数学研究所从事博士后研究,2005年7月至2006年7月在法国波尔多大学进行学术访问。主持国家自然科学基金和省自然科学基金项目共6项,获省教委科技进步奖1项和省高校科研成果奖1项。在国内外学术刊物上发表论文90余篇, 其中被SCI索引60余篇。 著作成果 图论及其应用 第2版 图论及其应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Wang, Weifan.On 3-colorable planar graphs without prescribed cycles..Discrete Math.2007,Vol.307 (No.22):2820-2825 [2]Wei-fan Wang.Planar graphs without 4,6,8-cycles are 3-colorable.Science in China, Series A: Mathematics, Physics, Astronomy.2007,Vol.50 (NO.11):1552-1562 [3]Chen Min.The 2-dipath chromatic number of Halin graphs.Information Processing Letters.2006,Vol.99 (NO.2):47-53 [4]Chen, Min.Plane Graphs with Maximum Degree 6 are Edge-face 8-colorable..Graphs and Combinatorics.2014,Vol.30 (No.4):861-874 [5]王维凡.不含4,6,8-圈的平面图是3-可染的.中国科学A辑.2007,第37卷 (第8期):982-992 [6]Chen, Min.List vertex-arboricity of toroidal graphs without [formula omitted]-cycles adjacent to [formula omitted]-cycles..Discrete Mathematics.2016,Vol.339 (No.10):2526-2535 [7]Victor Loumngam?Kamga.2-Distance vertex-distinguishing index of subcubic graphs.Journal of Combinatorial Optimization.2018,Vol.36 (No.1):108-120 [8]A note on the list vertex arboricity of toroidal graphs.Discrete Mathematics.2018,Vol.341 (No.12):3344-3347 [9]Min Chen.On Choosability with Separation of Planar Graphs Without Adjacent Short Cycles.Bulletin of the Malaysian Mathematical Sciences Society.2018,Vol.41 (No.3):1507-1518 [10]Xiaofang Luoa.On 3-colorable planar graphs without cycles of four lengths.Information Processing Letters.2007,Vol.103 (NO.4):150-156 [11]Acyclic 6-choosability of planar graphs without adjacent short cycles.SCIENCE CHINA Mathematics [12]Weifan Wang.The surviving rate of an outerplanar graph for the firefighter problem.Theoretical Computer Science.2011,Vol.412 (No.8-10):913-921 [13]Hao Gui.Equitable total-coloring of subcubic graphs.Discrete Applied Mathematics.2015,Vol.184 :167-170 [14]Danjun Huang.Adjacent vertex distinguishing indices of planar graphs without 3-cycles.Discrete Mathematics.2015,Vol.338 (No.3):139-148 [15]Yiqiao Wang.Some bounds on the neighbor-distinguishing index of graphs.Discrete Mathematics.2015,Vol.338 (No.11):2006-2013 [16]Huang, Danjun.A note on the adjacent vertex distinguishing total chromatic number of graphs..Discrete Mathematics.2012,Vol.312 (No.24):3544-3546 [17]Dong Chen.(2,1) -total labeling of trees with large maximum degree.Discrete Applied Mathematics.2015,Vol.187 :61-69 [18]Qiaojun Shu.Acyclic chromatic indices of planar graphs with girth at least five.Journal of Combinatorial Optimization.2012,Vol.23 (No.1):140-157 [19]Ye, CY.Fault tolerant path-embedding in locally twisted cubes.ARS COMBINATORIA.2012,Vol.107 :51-63 [20]The surviving rate of planar graphs.THEORETICAL COMPUTER SCIENCE.2012,Vol.416 :65-70 [21]Weifan Wang.Entire colouring of plane graphs.Journal of Combinatorial Theory. Series B.2011,Vol.101 (No.6):490-501 [22]Yiqiao Wang.Adjacent vertex distinguishing total colorings of outerplanar graphs.Journal of Combinatorial Optimization.2010,Vol.19 (No.2):123-133 [23]Weifan Wang.Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree.Journal of Combinatorial Optimization.2010,Vol.19 (No.4):471-485 [24]Weifan Wang.An improved bound on parity vertex colourings of outerplane graphs.Discrete Mathematics.2012,Vol.312 (No.18):2782-2787 [25]Weifan Wang.The 2-surviving rate of planar graphs without 4-cycles.Theoretical Computer Science.2012,Vol.457 :158-165 [26]Weifan Wang.On backbone coloring of graphs.Journal of Combinatorial Optimization.2012,Vol.23 (No.1):79-93 [27]Huang, DJ.A Note on General Neighbor-Distinguishing Total Coloring of Graphs.ARS COMBINATORIA.2012,Vol.107 :379-384 [28]Qiaojun Shu.Acyclic edge coloring of planar graphs without 5-cycles.Discrete Applied Mathematics.2012,Vol.160 (No.7-8):1211-1223 [29]Danjun Huang.On the vertex-arboricity of planar graphs without 7-cycles.Discrete Mathematics.2012,Vol.312 (No.15):2304-2315 [30]Wang,Weifan.The surviving rate of an infected network..Theoretical Computer Science.2010,Vol.411 (No.40-42):3651-3660 [31]Min Chen.Some results on the injective chromatic number of graphs.Journal of Combinatorial Optimization.2012,Vol.24 (No.3):299-318 [32]Leizhen Cai.Choosability of toroidal graphs without short cycles.Journal of Graph Theory.2010,Vol.65 (No.1):1-15 [33]Lan Shen.On the 9-total-colorability of planar graphs with maximum degree 8 and without intersecting triangles.Applied Mathematics Letters.2009,Vol.22 (No.9):1369-1373 [34]Wei-Fan Wang.Edge-partitions of graphs of nonnegative characteristic and their game coloring numbers.Discrete Mathematics.2006,Vol.306 (NO.2):262-270 [35]Huang, Danjun.Planar graphs of maximum degree six without 7-cycles are class one..Electron. J. Combin..2012,Vol.19 (No.3):17 [36]Huang, Dan-jun.Class I graphs of nonnegative characteristic without special cycles..Appl. Math. J. Chinese Univ. Ser. B.2012,Vol.27 (No.3):320-328 [37]YingQian Wang.On 3-colorability of planar graphs without adjacent short cycles.Science in China, Series A: Mathematics, Physics, Astronomy.2010,Vol.53 (No.4):1129-1132 [38]Chen, Min.8-star-choosability of a graph with maximum average degree less than 3..Discrete Math. Theor. Comput. Sci..2011,Vol.13 (No.3):97-110 [39]Δ—匹配与边面全色数.应用数学学报.1999,第22卷 (第2期):236-242 [40]超图中着色问题.数学进展.2000 (第2期):115-136 [41]Melnikov猜想Δ=4情形的一个证明.科学通报.1998,第43卷 (第3期):330-331 [42]A SEVEN-COLOR THEOREM ON EDGE-FACE COLORING OF PLANE GRAPHS.数学物理学报(英文版).2001,第21卷 (第2期):243-248 [43]On the vertex face total chromatic number of planar graphs.Journal of Graph Theory.1996,Vol.22 (No.1):29-37 [44]A proof of Melnikov's conjecture for case ...=4..Chinese Science Bulletin.1998,Vol.43 (NO.4):352-352 [45]The total chromatic number of pseudo-outerplanar graphs.Applied Mathematics-A Journal of Chinese Universities.1997,Vol.12 (No.4):455-462 [46]Choosability and edge choosability of planar graphs without five cycles.Applied Mathematics Letters.2002,Vol.15 (NO.5):561-565 [47]A new proof of Melnikov's conjecture on the edge-face coloring of plane graphs.Discrete Mathematics.2002,Vol.253 (NO.1):87-95 [48]Edge-partitions of planar graphs and their game coloring numbers.Journal of Graph Theory.2002,Vol.41 (NO.4):307-317 [49]王维凡.不含4-和5-圈的平面图的均匀染色.浙江师范大学学报(自然科学版).2014 (第1期):1-6 [50]Chuandong Xu.Rainbow cliques in edge-colored graphs.European Journal of Combinatorics.2016,Vol.54 :193-200 [51]Xiaoxue Hu.Plane graphs with maximum degree 9 are entirely 11-choosable.Discrete Mathematics.2016,Vol.339 (No.11):2742-2753 [52]Jiangxu Kong.The surviving rate of digraphs.Discrete Mathematics.2014,Vol.334 :13-19 [53]Xiaoxue Hu.The edge-face choosability of plane graphs with maximum degree at least 9.Discrete Mathematics.2014,Vol.327 :1-8 [54]陈东.最大度为3的树的L(2,1)-标号数的一个刻画.数学学报.2016,第59卷 (第5期):685-710 [55]Weifan Wang.Acyclic edge coloring of planar graphs without 4-cycles.Journal of Combinatorial Optimization.2013,Vol.25 (No.4):562-586 [56]Qiaojun Shu.Acyclic Chromatic Indices of Planar Graphs with Girth At Least 4.Journal of Graph Theory.2013,Vol.73 (No.4):386-399 [57]Yiqiao Wang.The acyclic edge coloring of planar graphs without a 3-cycle adjacent to a 4-cycle.Discrete Applied Mathematics.2013,Vol.161 (No.16-17):2687–2694 [58]Weifan Wang.A lower bound of the surviving rate of a planar graph with girth at least seven.Journal of Combinatorial Optimization.2014,Vol.27 (No.4):621-642 [59]Gao, W.Degree conditions for fractional (k, m)-deleted graphs.ARS COMBINATORIA.2014,Vol.113A :273-285 [60]Gao, W.Binding number and fractional (g, f, n ', m)-critical deleted graph.ARS COMBINATORIA.2014,Vol.113A :49-64 [61]Wei Gao.The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures.Computational and Mathematical Methods in Medicine.2015,Vol.2015 [62]Weifan Wang.Linear Coloring of Planar Graphs Without 4-Cycles.Graphs and Combinatorics.2013,Vol.29 (No.4):1113-1124 [63]郑丽娜.2-外平面图的无圈边色数.数学研究.2012 (第1期):82-93 [64]Shu, Qiaojun.Acyclic list edge coloring of outerplanar graphs..Discrete Mathematics.2013,Vol.313 (No.3):301-311 [65]Gao, Wei.Revised Szeged index and revised edge-szeged index of special chemical molecular structures..Journal of Interdisciplinary Mathematics.2016,Vol.19 (No.3):495-516 [66]王侃.围长至少为6的平面图的线性染色.高校应用数学学报A辑.2010 (第4期):487-495 [67]Wang, WF.Total chromatic number of planar graphs with maximum degree ten.Journal of Graph Theory.2007,Vol.54 (NO.2):91-102 [68]陈永珠.第一类图的一个充分条件.应用数学学报.2009 (第1期):112-120 [69]Chen,Yongzhu.Diameters of uniform subset graphs..Discrete Mathematics.2008,Vol.308 (No.24):6645-6649 [70]张忠辅.EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE.数学物理学报(B辑)(英文版).2006 (第3期):477-482 [71]Wei-fan Wang and Xiao-fang Luo.Some results on distance two labelling of outerplanar graphs.Acta Mathematicae Applicatae Sinica.2009,Vol.25 (No.1):21-32 [72]王维凡.非负特征图的线性染色.中国科学(A辑:数学).2008 (第12期):1321-1334 [73]Weifan Wang and Yongzhu Chena.A sufficient condition for a planar graph to be class 1.Theoretical Computer Science.2007,Vol.385 (NO.1-3):71-77 [74]Wei Gao.Topological Indices Study of Molecular Structure in Anticancer Drugs.Journal of Chemistry.2016,Vol.2016 [75]Chao Li.Upper bounds on the linear chromatic number of a graph.Discrete Mathematics.2011,Vol.311 (No.4):232-238 [76]王维凡.没有K4-图子式的图的无圈边色数.中国科学:数学.2011 (第8期):733-744 [77]Lu,Huajing.On the 3-colorability of planar graphs without 4-, 7- and 9-cycles..Discrete Mathematics.2009,Vol.309 (No.13):4596-4607 [78]Huang,Jing.-Total labelling of trees with sparse vertices of maximum degree..Information Processing Letters.2009,Vol.109 (No.3):199-203 [79]Bu,Yuehua.Injective coloring of planar graphs..Discrete Applied Mathematics.2009,Vol.157 (No.4):663-672 [80]Wei Gao.The first multiplication atom-bond connectivity index of molecular structures in drugs.Saudi Pharmaceutical Journal.2017,Vol.25 (No.4):548-555 [81]Wang Weifan.L(p, q)-labelling of K_4-minor free graphs.Information Processing Letters.2006,Vol.98 (NO.5):169-173 [82]岳绪彬.哈林图的防火问题.浙江师范大学学报(自然科学版).2011 (第2期):141-144 [83]Wei Gao.Electron Energy Studying of Molecular Structures via Forgotten Topological Index Computation.Journal of Chemistry.2016,Vol.2016 [84]Wei Gao.Second Atom-Bond Connectivity Index of Special Chemical Molecular Structures.Journal of Chemistry.2014,Vol.2014 [85]王维凡.没有K_4-图子式的图的邻点可区别全染色.中国科学(A辑:数学).2009 (第12期):1462-1472 [86]Yuehua Bu.Star coloring of sparse graphs.Journal of Graph Theory.2009,Vol.62 (No.3):201-219 [87]Weifan Wang.Coupled choosability of plane graphs.Journal of Graph Theory.2008,Vol.58 (No.1):27-44 [88]Wang,Weifan.Labelling planar graphs without 4-cycles with a condition on distance two..Discrete Applied Mathematics.2008,Vol.156 (No.12):2241-2249 [89]卜月华.色数等于选择数的4-正则图(英文).运筹学学报.2006,第10卷 (第2期):69-74 [90]钱景.K4-minor-free图的线性2-荫度.运筹学学报.2008 (第4期):48 [91]Weifan Wang.Edge choosability of planar graphs without short cycles.Science in China, Series A: Mathematics, Physics, Astronomy.2005,Vol.48 (No.11):1531-1544 [92]Bu, Yuehua.Some sufficient conditions for a planar graph of maximum degree six to be Class 1.Discrete Mathematics.2006,Vol.306 (NO.13):1440-1445 [93]Wei-Fan Wang.On the sizes of graphs embeddable in surfaces of nonnegative Euler characteristic and their applications to edge choosability.European Journal of Combinatorics.2007,Vol.28 (NO.1):111-120 [94]陈东.一些图的生成树数.数学物理学报.2008 (第5期):906-913 [95]Wang Weifan.ENTIRE CHROMATIC NUMBER AND A-MATCHING OF OUTERPLANE GRAPHS.Acta Mathematica Scientia.2005,Vol.25 (NO.4):672-680 [96]Wei-Fan Wang.Vertex-pancyclicity of edge-face-total graphs.Discrete Applied Mathematics.2004,Vol.143 (NO.1-3):364-367 [97]王艺桥.最大度为6的平面图为第一类的一个新充分条件.中国科学:数学.2010 (第11期):1129-1136 [98]许丰伟.关于完全可定向图的一个注记*.浙江师范大学学报(自然科学版).2010 (第1期):41-44 [99]Wei-Fan Wang.List Coloring Halin Graphs.Ars Combinatoria.2005,Vol.77 :53-63 [100]卜月华.色数等于选择数的4-正则图.运筹学学报.2006,第10卷 (第2期)

推荐链接
down
wechat
bug