个人简介
张 翼,男,1964年10月出生,浙江省151人才第二层次入选者。浙江省应用数学研究会副理事长、曾任浙江师范大学期刊社副社长、《中学教研》(数学)主编、浙江师范大学学报(自然科学版)副主编。1984年毕业于浙江师范大学数学系,同年留校工作。1993年获杭州大学数学系硕士学位,研究方向为偏微分方程。1999年至2000年在复旦大学数学系作访问学者,师从李大潜院士研究偏微分方程的等值面边值问题的计算工作。2004年12月获上海大学数学系计算数学专业理学博士学位,研究方向为孤立子理论与可积系统。2005年3月起在华东师范大学做博士后研究工作,研究方向为孤子方程求解与计算机符号计算问题。2006年在中科院工程与科学计算研究所作合作访问研究。2010-2011在美国南佛罗理达大学、阿拉巴马大学合作访问研究。2015.12-2016.1在香港中文大学、香港大学研究访问;2018.1-3月在台湾中央研究院数学研究所访问。
主讲课程
主讲本科课程:常微分方程、偏微分方程、数学建模、经济数学
主讲研究生课程:应用偏微分方程、孤立子理论、数学建模与符号计算、李代数与对称、可积系统
科研项目
主持或参与项目名称,项目来源,项目时间,(参与的排名第几),是否已结题
1.参加国家973项目子课题“微分方程的符号计算(No.2004CB318000);
2.参加国家自然科学基金项目孤子方程新解与元胞自动机(No.10371070);
3.国家自然科学基金重点项目“动力系统的分支与应用(No. 10831003)”(核心成员);
4.国家自然科学基金项目“多重Hopf分支、周期映射和孤立子方程精确解研究(No.10771196) ”( 联合主持,主持项目第二部分工作);
5.主持完成浙江省自然科学基金项目“基于双线性方法的孤子可积系统”(No. Y605044);
6.主持浙江省自然科学基金项目“孤子方程的精确解及其符号计算研究” (No. Y7080198);
7.主持浙江省新世纪教改项目“数学建模与数学实验的改革与实践”(2007);
8.全国九五教育规划重点课题“文化传统与数学教育现代化”(第二主持人,2005);
9.浙江省自然科学基金项目“带非线性约束的逼近与优化问题”(第二主持人,2003);
10.主持浙江省教育厅项目“离散孤子系统若干问题研究”(No.20050280);
11.主持浙江省教育厅项目“数学实验的教育价值研究(2001);
12.主持浙江省人事厅高级继续教育“非线性波及其应用高级研讨班”项目(2008);
13.主持浙江师范大学“数学主干课程教学与实践教学团队” 项目;
14. 主持教育部大学数学研究与发展中心项目“大学数学与中学数学的衔接研究”
15. 数学浙江省高等学校创新团队主要成员;
16.浙江省自然科学基金(杰出青年团队项目)主要成员。
著作:
1.《初等数学建模活动》(浙江科学技术出版社出版,2001),独立
2.教育部重点规划教材《数学建模方法》(华东师大出版社出版,2003),主要作者
3.参编中国社会科学院研究生教材《经济系统分析》(中国社会科学出版社出版,1999),主要作者。
获奖情况
获奖成果,获奖来源,获奖等级,获奖时间,本人排名
1. “数学建模与高师数学教育改革“2001年获浙江省人民政府优秀教学成果二等奖;
2. “基于双线性方法的孤子可积系统”2005年获得浙江省高校科研成果三等奖;
3. “非线性发展方程精确解以及动力学性质研究”2008年获得浙江省高校科研成果一等奖.
指导研究生情况
1.已毕业研究生6名,教育硕士8名
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]程丽.A KdV-Type Wronskian Formulation to Generalized KP, BKP and Jimbo–Miwa Equations.Communications in Theoretical Physics.2017 (第7期):1-5
[2]Children with positive attitudes towards mind-wandering provide invalid subjective reports of mind-wandering during an experimental task..Conscious Cogn..2015,Vol.35 :136-142
[3]程丽.(2+1)维非线性薛定谔方程的怪波解.长江大学学报(自然科学版).2016,第13卷 (第7期):35-39,4
[4]Cheng, Li.Multiple wave solutions and auto-Bäcklund transformation for the ([formula omitted])-dimensional generalized B-type Kadomtsev–Petviashvili equation..Computers & Mathematics with Applications.2015,Vol.70 (No.5):765-775
[5]张翼.消费不平等:资源支配逻辑和机会结构重塑.甘肃社会科学.2015 (第4期):1-7
[6]Li Cheng.Grammian-type determinant solutions to generalized KP and BKP equations.Computers & Mathematics with Applications.2017,Vol.74 (No.4):727-735
[7]Ye Q.Children's mental time travel during mind wandering..Front Psychol.2014,Vol.5 :927
[8]Yi Zhang.Rational solutions to a KdV-like equation.Applied Mathematics and Computation.2015,Vol.256 :252-256
[9]Zuqiang Su.Machinery running state identification based on discriminant semi-supervised local tangent space alignment for feature fusion and extraction.Measurement Science and Technology.2017,Vol.28 (No.5):055009
[10]林晓珊.制度变迁与消费分层:消费不平等的一个分析视角.兰州大学学报(社会科学版).2014 (第1期):8-15
[11]张翼.Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation.中国物理B(英文版).2012,第21卷 (第12期):23-30
[12]Li Cheng.A Wronskian formulation of the (3?+?1)-dimensional generalized BKP equation.Physica Scripta.2013,Vol.88 (No.1):015002
[13]Xingxing Liu.Leaf characters of Ulmus elongata in fragmented habitats: Implications for conservation.Acta Ecologica Sinica.2017,Vol.37 (No.5):346-353
[14]Li Cheng.Rational and complexiton solutions of the (3+1)-dimensional KP equation.Nonlinear Dynamics.2013,Vol.72 (No.3):605-613
[15]Yi Zhang.A note on “The integrable KdV6 equation: Multiple soliton solutions and multiple singular soliton solutions”.Applied Mathematics and Computation.2009,Vol.214 (No.1):1-3
[16]Zhang Yi.Rational and Periodic Wave Solutions of Two-Dimensional Boussinesq Equation.Communications in Theoretical Physics.2008,Vol.49 (No.4):815-824
[17]Zhang, Yi.On the nonisospectral modified Kadomtsev–Peviashvili equation..Journal of Mathematical Analysis and Applications.2008,Vol.342 (No.1):534-541
[18]Gendi Xu.Effects of organic acids on uptake of nutritional elements and Al forms in Brassica napus L. under Al stress as analyzed by27Al-NMR.Brazilian Journal of Botany.2016,Vol.39 (No.1):1-8
[19]ZHANG.N-Soliron-like Solution of Ito Equation.理论物理通讯(英文版).2004 (第11期):641-644
[20]Zhang, Y.The exact solutions to the complex KdV equation.Physics Letters. A.2007,Vol.367 (NO.6):465-472
[21]Li,Jibin.Exact travelling wave solutions in a nonlinear elastic rod equation..Applied Mathematics and Computation.2008,Vol.202 (No.2):504-510
[22]ZHANG.N-Soliton-like Solution of Ito Equation.理论物理通讯(英文版).2004,第42卷 (第11期)
[23]Zhang, Yi.Quasiperiodic waves and asymptotic behavior for the nonisospectral and variable-coefficient KdV equation..AIP Conference Proceedings.2013,Vol.1562 (No.1):257-264
[24]Zhang, Yi.The Darboux transformation for the coupled Hirota equation..AIP Conference Proceedings.2013,Vol.1562 (No.1):249-256
[25]Wen-Xiu Ma.Component-trace identities for Hamiltonian structures..Applicable Analysis.2010,Vol.89 (No.4):457-472
[26]张翼.一类具临界指数和等值面边值条件椭圆型方程解的存在性.应用数学与计算数学学报.2004,第18卷 (第1期):23-32
[27]ZHANG Yi.N-Soliton-like Solution of Ito Equation.Communications in Theoretical Physics.2004,Vol.42 (NO.5):641-644
[28]陈琳.科技进步对新农村建设的影响评价:以浙江省以及省内各地区为例.中国科技博览.2011 (第11期):234-236
[29]Zhang, Yi.A modified B?cklund transformation and multi-soliton solution for the Boussinesq equation.CHAOS, SOLITONS AND FRACTALS.2005,Vol.23 (NO.1):175-182
[30]张翼.KdV方程矩阵形式的精确解.浙江师范大学学报(自然科学版).2009 (第2期):126-132
[31]张翼.Wronskian and Grammian Solutions for (2 + 1)-Dimensional Soliton Equation.理论物理通讯:英文版.2011 (第1期):20-24
[32]Zhang, Y.The novel multi-solitary wave solution to the fifth-order KdV equation.Chinese physics.2004,Vol.13 (NO.10):1606-1610
[33]Yu-bin Shi.Rogue waves of a (3+1) -dimensional nonlinear evolution equation.Communications in Nonlinear Science and Numerical Simulation,Vol.44 :120-129
[34]张翼.科技进步对新农村建设影响的预测与评价研究.中国科技信息杂志.2008 (第16期):87-88,90
[35]吴妙仙.科技进步对新农村建设影响的定量评价研究:以浙江省金华市为例.金华职业技术学院学报.2009 (第4期):22
[36]Yi Zhang.Soliton resonance of the NI-BKP equation..AIP Conference Proceedings.2010,Vol.1212 (No.1):231-242
[37]葛健芽.科技进步对新农村建设影响的预测及评价.金华职业技术学院学报.2008 (第4期):41-44
[38]吴妙仙.Hirota方法求解KdV-mKdV混合方程的多孤子解.浙江教育学院学报.2008 (第2期):69-74,81
[39]薛儒英.半线性椭圆型方程组的正解.杭州大学学报(自然科学版).1996,第23卷 (第4期):297-305
[40]Yi Zhang.Positons, negatons and complexitons of the mKdV equation with non-uniformity terms.Applied Mathematics and Computation.2010,Vol.217 (No.4):1463-1469
[41]张翼.一类Riemann-Hilbert问题的互斥性条件.浙江师范大学学报(自然科学版).2005,第28卷 (第1期):5-9
[42]徐徐.不完全信息群体多属性决策的综合评价均值法.浙江师范大学学报(自然科学版).2004,第27卷 (第3期):22-25
[43]张翼.数学教师继续教育的若干思考.师资培训研究.1999 (第3期):22-25
[44]Jianwen Yang.Higher-order rogue wave solutions of a general coupled nonlinear Fokas–Lenells system.Nonlinear Dynamics.2018,Vol.93 (No.2):585-597
[45]Yi Zhang.The exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vries equation.Annals of Physics.2008,Vol.323 (No.12):3059-3064
[46]Mengwen Ma.Sprouting as a survival strategy for non-coniferous trees: Relation to population structure and spatial pattern of Emmenopterys henryi (Rubiales).Acta Ecologica Sinica.2018
[47]Sprouting as a survival strategy for non-coniferous trees: Relation to population structure and spatial pattern of Emmenopterys henryi.Acta Ecologica Sinica.2018
[48]Zhang, Y.EXACT DARK SOLITON SOLUTION OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION.Modern Physics Letters B.2009,Vol.23 (No.24):2869-2888
[49]Ye Ling-Ya.Grammian Solutions to a Variable-Coefficient KP Equation.Chinese Physics Letters.2008,Vol.25 (No.2):357-358
[50]Zhang, Y.Periodic wave solutions of the Boussinesq equation.Journal of Physics: A Mathematical and Theoretical.2007,Vol.40 (NO.21):5539-5549
[51]Zhang, Y.A CLASS OF EXACT SOLUTIONS OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION.Reports on Mathematical Physics.2009,Vol.63 (No.3):427-439
[52]Li, Jibin.Exact M/W-shape solitary wave solutions determined by a singular traveling wave equation.Nonlinear Anal. Real World Appl..2009,Vol.10 (No.3):1797-1802
[53]Zhang, Y.The exact solution to Boussinesq equation through a limiting procedure.Physica. Section A: Statistical and Theoretical Physics.2007,Vol.373 (No.0):174-182
[54]Extended Wronskian formula for solutions to the Korteweg-deVries equation.ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4.2008,Vol.96
[55]Pfaffian and rational solutions for a new form of the -dimensional BKP equation in fluid dynamics.The European Physical Journal Plus.2018,Vol.133 (No.10)
[56]The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation.Annals of Physics (New York).2008,Vol.323 (No.12)
[57]A multiple exp-function method for nonlinear differential equations and its application.Physica Scripta
[58]Cheng, Li.Multiple wave solutions and auto-Backlund transformation for the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation.COMPUTERS & MATHEMATICS WITH APPLICATIONS.2015,Vol.70 (No.5):765-775
[59]Yu Yu-Ye.Synthesis, Crystal Structures, Luminescent Properties and DNA-Binding of Cadmium Complexes with 2,4-Bis-oxyacetate-benzoic Acid.CHINESE JOURNAL OF INORGANIC CHEMISTRY.2014,Vol.30 (No.10):2332-2340
[60]A KdV-Type Wronskian Formulation to Generalized KP, BKP and Jimbo–Miwa Equations.Communications in Theoretical Physics.2017,Vol.68 (No.1):1
[61]Li, Jing.Significance of stump-sprouting for the population size structure and spatial distribution patterns of endangered species, Magnolia cylindrica.POLISH JOURNAL OF ECOLOGY.2017,Vol.65 (No.2):247-257
[62]Li Cheng.Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations.Modern Physics Letters B.2017,Vol.31 (No.25):1750224
[63]Yi Zhang.The triple Wronskian solutions to the variable-coefficient Manakov model.International Journal of Modern Physics B.2016,Vol.30 (No.28-29):1640031
[64]The long wave limiting of the discrete nonlinear evolution equations.Chaos, Solitons & Fractals.2009,Vol.42 (No.5):2965-2972
[65]Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH–DP equation.Nonlinear Analysis: Real World Applications.2009,Vol.10 (No.4):2502-2507
[66]Li, Jibin.On a class of singular nonlinear traveling wave equations. II. An example of GCKdV equations..Internat. J. Bifur. Chaos Appl. Sci. Engrg..2009,Vol.19 (No.6):1995-2007
[67]张翼.Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients.中国物理(英文版).2011,第20卷 (第11期):34-40
[68]Yi Zhang.Rational solutions for a combined (3 + 1)-dimensional generalized BKP equation.Nonlinear Dynamics.2018,Vol.91 (No.2):1337-1347
[69]Jibin.The Exact Traveling Wave Solutions to Two Integrable KdV6 Equations.数学年刊B辑(英文版).2012 (第2期):179-190
[70]Li Cheng.Wronskian and linear superposition solutions to generalized KP and BKP equations.Nonlinear Dynamics.2017,Vol.90 (No.1):355-362
[71]叶灵娅.Grammian Solutions to a Variable-Coefficient KP Equation.中国物理快报:英文版.2008,第25卷 (第2期):357-358
[72]Yi Zhang.CTE method and exact solutions for modified Boussinesq system.Mathematical Methods in the Applied Sciences.2017,Vol.40 (No.5):1696-1702
[73]张翼.外显态度对任务中个体心智游移的影响:以四、五年级学生为例.九江职业技术学院学报.2015 (第1期):74-77,64
[74]Zhang, Yi.The rogue waves of the KP equation with self-consistent sources..Applied Mathematics & Computation.2015,Vol.263 :204-213
[75]张翼.村庄婚姻圈变迁及影响机制分析——以华北F 村为例.北京社会科学.2017 (第1期):81-89
[76]Yi Zhang.New type of a generalized variable-coefficient Kadomtsev–Petviashvili equation with self-consistent sources and its Grammian-type solutions.Communications in Nonlinear Science and Numerical Simulation.2016,Vol.37 :77-89
[77]Yi Zhang.Comment on "Superposition of elliptic functions as solutions for a large number of nonlinear equations" [J. Math. Phys. 56, 032104 (2015)]..Journal of Mathematical Physics.2015,Vol.56 (No.8):1-3
[78]Yi Zhang.Comment on “Superposition of elliptic functions as solutions for a large number of nonlinear equations” [J. Math. Phys. 56, 032104 (2015)].Journal of Mathematical Physics.2015,Vol.56 (No.8):084101
[79]Yingli Kang.Soliton solution to BKP equation in Wronskian form.Applied Mathematics and Computation.2013,Vol.224 :250–258
[80]张翼.浅谈数学实验的教学内容与教学方法.中国大学教学.2009 (第1期)