当前位置: X-MOL首页全球导师 国内导师 › 周盛凡

个人简介

周盛凡,男,1963年4月出生,广西省融安县人 学习经历 1979.9-1983.7 广西师范大学数学系获理学学士,数学专业; 1987.9-1990.7 云南大学数学学院获理学硕士学位,基础数学专业; 1990.9-1994.1 北京大学数学学院获理学博士学位,应用数学专业; 1994.5-1996.5 四川大学数学学院博士后; 1999.10-2000.10 以色列巴伊兰大学地理系博士后。 工作简历 1983.8-1984.8 广西融安县第二中学教师; 1984.9-1985.8 广西融安县教师进修学校教师; 1985.9-1987.8 广西融安县高中教师; 1996.6-2002.2 四川大学数学学院任教;副教授(1996.6) 教授(1998.6) 博士生导师(2001.6); 2002.3-2007.3 上海大学数学系教授、博士生导师; 2007.4-2011.6 上海师范大学数学系教授、博士生导师; 2011.6-至今 浙江师范大学数学系教授。 人才梯队、荣誉 浙江省钱江高级人才(省特聘教授)(2013.9)。 代表性科研项目 1.2002-2004, 国家自然科学基金面上项目—“格点动力系统与非线性波动方程的吸引子”; 2.2005-2007, 国家自然科学基金面上项目—“格点系统与波动方程的时空行为”; 3.2008-2010, 国家自然科学基金面上项目—“非自治格点系统与非牛顿流的渐近行为”; 4.2011-2013, 国家自然科学基金面上项目—“随机格点系统与波动方程的渐近行为”。 学术报告 1.2008.7:在美国Florida的第五次世界非线性分析大会(WCNA)上做两个45分钟邀请报告; 2.2008.5:在美国Auburn University举办的的微分方程及应用国际会议上做1小时邀请报告. 近三年教学情况 本科生主讲课程:《数学分析》、《常微分方程》、《高等数学》; 研究生主讲课程:《无穷维动力系统的吸引子》、《非自治动力系统》、《随机动力系统》,指导培养硕士研究生6名,培养博士研究生2名。 Profile Zhou Shengfan,Male,Professor, College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, China. Education Background 1979.9-1983.7 Student of Bachelor, Mathematics, Guangxi Normal University; 1987.9-1990.7 Student of Master, Mathematics, Yunnan University; 1990.9-1994.1 Student of Ph.D, Applied Mathematics, Peking University; 1994.5-1996.5 Postdoctoral Fellow, Mathematics, Sichuan University; 1999.10-2000.10 Postdoctoral Fellow, Geography, Bar-Ilan University, Israel. Work Experiences 1983.8-1987.8 Teacher, Advance Middle School, Rongan, Guangxi; 1996.6-2002.2 College of Mathematics, Sichuan University; Associated Professor(1996.6) Professor(1998.6); 2002.3- 2007.3 Professor , Department of Mathematics, Shanghai University; 2007.4 -2011.6 Professor , Department of Mathematics, Shanghai Normal University; 2011.6 - present Professor, Department of Mathematics, Zhejiang Normal University. Other Academic Positions/Memberships Member of Editorial Board of Mathematical Journals《International Journal of Applied Mathematics and Applications》and《Journal of Applied Analysis and Computation. Honorable Titles and Awards: Zhejiang Qianjiang Senior Professor (2013. 9). Research Field and Achievements Infinite-dimensional dynamical systems, Lattice dynamical systems, Random dynamical systems. Published more than 100 articles in 《J. Diff. Eqns.》、《Nonlinearity》、《Quart. Appl. Math.》、《Physica D》、《J. Math. Phys.》、《Proc. Amer. Math. Soc.》、《Nonl. Anal.》、《J. Math. Anal. Appl.》、《Disc. Contin. Dyna. Syst.》、《Inter. J. Bifur. Chaos》、《Appl. Math. Comp.》、《J. Compu. Appl. Math.》、《Comm. Pure Appl. Anal.》、《Appl. Math. Lett.》、《Science in China》et al. Representative Works 1.Zhou Shengfan, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2), 605-624, 2002. 2. Zhou Shengfan, Attractors and approximations for lattice dynamical systems. J. Differential Equations,200 (2), 342-368, 2004. 3. Zhou Shengfan, Shi Wei, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224,172-204, 2006. 4. Zhongwei Shen,Shengfan Zhou,Wenxian Shen,One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation,J. Differential Equations, 248, 1432-1457, 2010. 5. Xiaoying Han, Wenxian Shen, Shengfan Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations,250, 1235-1266, 2011 6. Shengfan Zhou, Xiaoying Han, Pullback exponential attractors for non-autonomous lattice systems, J. Dyna. Differential Equations, 24(3), 601-631, 2012. 7. Shengfan Zhou, Linshan Wang, Kernel sections for non-autonomous damped wave equations with critical exponent, Discrete and Continuous Dynamical Systems, 9, 399-412, 2003. 8. hengfan Zhou, Caidi Zhao, Yejuan Wang, Finite dimensionality and upper semicontinuity of kernel sections for nonautonomous lattice dynamical systems, Discrete and Continuous Dynamical Systems, 21, 1259-1277, 2008. 9. Shengfan Zhou, Attractors for lattice systems corresponding to evolution equations, Nonlinearity, 15, 1079-1095, 2002 10. Shengfan Zhou, Fuqi Yin, Zigen Ouyang, Random attractor for dapmed nonlinear wave equations with white noise, SIAM J. Appl. Dyna. Syst., 4, 883-903, 2005. Research Projects 1. 2002-2004, National Natural Science Foundation of China--“Attractors for lattice dynamical systems and nonlinear wave equations”; 2. 2005-2007, National Natural Science Foundation of China--“Time-spatial behavior of lattice systems and wave equations”; 3. 2008-2010, National Natural Science Foundation of China--“Asymptotic behavior of non-autonomous lattice systems and non-Newtonian fluid”; 4. 2011-2013, National Natural Science Foundation of China--“Asymptotic behavior of stochastic lattice systems and wave equations”. Reports 1. 2008.7: Two 45 minutes invited talk in the 5th World Conference of Nonlinear Analysis, Orlando, Florida, USA; 2. 2008.5: One hour invited talk in the International Conference on Differential Equations and Applications, Auburn University, USA. Teaching and Supervision during Last 3 Years Bachelor Degree Courses: 《Mathematical Analysis》、《Ordinary Differential Equations》、《Advanced Mathematics》; Master Degree Courses: 《Attractors of Infinite-dimensional Dynamical Systems》、《Non-autonomous Dynamical Systems》; Ph. D Degree Course: 《Random Dynamical Systems》.

研究领域

长期从事微分方程与动力系统专业领域的研究,主要研究非线性演化方程的定性理论、无穷维动力系统、格点动力系统、随机动力系统与泛函微分方程等。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Xiaolin Xiang.Attractors for second order nonautonomous lattice system with dispersive term.Topological Methods in Nonlinear Analysis.2015,Vol.46 (No.2):893-914 [2]Sheng.Uniform Exponential Attractor for Nonautonomous Partly Dissipative Lattice Dynamical System.数学学报(英文版).2014,第30卷 (第8期):1381-1394 [3]Xiaopeng.Uniform Exponential Attractors for Second Order Non-autonomous Lattice Dynamical Systems.应用数学学报(英文版).2017,第33卷 (第3期):587-606 [4]周盛凡.具强阻尼的随机波动方程随机吸引子的分形维数*.浙江师范大学学报(自然科学版).2017,第40卷 (第3期):258-266 [5]Anhui.Random Attractors for Partly Dissipative Stochastic Lattice Dynamical Systems with Multiplicative White Noises.应用数学学报(英文版).2015,第31卷 (第2期):567-576 [6]Shengfan Zhou.Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise.Journal of Differential Equations.2017,Vol.263 (No.4):2247-2279 [7]Min Zhao.Random attractor for stochastic Boissonade System with time-dependent deterministic forces and white noises.Discrete and Continuous Dynamical Systems - Series B.2017,Vol.22 (No.4):1683-1717 [8]Xiao-peng Zhou.Uniform exponential attractors for second order non-autonomous lattice dynamical systems.Acta Mathematicae Applicatae Sinica, English Series.2017,Vol.33 (No.3):587-606 [9]Xiaopeng.Uniform Exponential Attractors for Second Order Non-autonomous Lattice Dynamical Systems.Acta Mathematicae Applicatae Sinica.2017 (第3期):587-606 [10]Shengfan Zhou.Random attractors for damped non-autonomous wave equations with memory and white noise.Nonlinear Analysis, Theory, Methods and Applications.2015,Vol.120 :202-226 [11]Min Zhao.Pullback and Uniform Exponential Attractors for Nonautonomous Boussinesq Lattice System.International Journal of Bifurcation and Chaos.2015,Vol.25 (No.8):1550100 [12]Zhaojuan Wang.Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients.Communications on Pure and Applied Analysis.2016,Vol.15 (No.6):2221-2245 [13]周盛凡.非自治与随机动力系统的吸引子.浙江师范大学学报(自然科学版).2014 (第1期):11-19 [14]Min Zhao.Random attractor of non-autonomous stochastic Boussinesq lattice system..Journal of Mathematical Physics.2015,Vol.56 (No.9):1-16 [15]崔红珍.带可乘白噪声的Schrodinger格点系统的随机吸引子.浙江师范大学学报(自然科学版).2017,第40卷 (第1期):17-23 [16]崔红珍.带可乘白噪声的Schrdinger格点系统的随机吸引子.浙江师范大学学报(自然科学版).2017 (第1期):17-23 [17]Zhaojuan Wang.Existence and Upper Semicontinuity of Attractors for Nonautonomous Stochastic Sine-Gordon Lattice Systems with Random Coupled Coefficients.Discrete Dynamics in Nature and Society.2016,Vol.2016 [18]周盛凡.非自治Boissonade系统的拉回和一致指数吸引子.中国科学:数学.2017 (第12期):1891-1906 [19]陈宏.具时变耦合系数的二阶格点系统的拉回指数吸引子.浙江师范大学学报(自然科学版).2014,第37卷 (第2期):142-150 [20]Shengfan Zhou.Finite fractal dimensions of random attractors for stochastic FitzHugh–Nagumo system with multiplicative white noise.Journal of Mathematical Analysis and Applications.2016,Vol.441 (No.2):648-667 [21]Shengfan Zhou.Fractal dimension of random attractors for stochastic non-autonomous reaction–diffusion equations.Applied Mathematics and Computation.2016,Vol.276 :80-95 [22]田永笑.非自治三分量可逆Gray-Scott系统的拉回指数吸引子*1.浙江师范大学学报(自然科学版).2016,第39卷 (第2期):121-128 [23]Exponential Attractor for Lattice System of Nonlinear Boussinesq Equation.Discrete Dynamics in Nature and Society.2013,Vol.2013 [24]Zhou, Shengfan.Pullback Exponential Attractor for Second Order Nonautonomous Lattice System..Discrete Dynamics in Nature and Society.2014,Vol.2014 [25]周盛凡.非线性薛定谔格点方程的指数吸引子*.浙江师范大学学报(自然科学版).2015,第38卷 (第4期):361-365 [26]Sheng Fan Zhou.Uniform exponential attractor for nonautonomous partly dissipative lattice dynamical system.Acta Mathematica Sinica.2014,Vol.30 (No.8):1381-1394 [27]Shengfan Zhou.Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces.Nonlinear Analysis, Theory, Methods and Applications.2013,Vol.78 :141-155 [28]An-hui Gu.Random attractors for partly dissipative stochastic lattice dynamical systems with multiplicative white noises.Acta Mathematicae Applicatae Sinica, English Series.2015,Vol.31 (No.2):567-576 [29]Zhou, Shengfan.Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation..Nonlinear Anal..2016,Vol.133 :292-318 [30]Zhaojuan Wang.Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise.Discrete and Continuous Dynamical Systems - Series A.2017,Vol.37 (No.5):2787-2812 [31]Anhui Gu.Uniform attractor of non-autonomous three-component reversible Gray–Scott system.Applied Mathematics and Computation.2013,Vol.219 (No.16):8718-8729 [32]Hongyan Li.Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation.Communications in Nonlinear Science and Numerical Simulation.2012,Vol.17 (No.9):3579-3586 [33]Xiaolin Xiang.Random attractor for stochastic second-order non-autonomous stochastic lattice equations with dispersive term.Journal of Difference Equations and Applications.2016,Vol.22 (No.2):235-252 [34]娄佳佳.Zakharov格点动力系统的指数吸引子.高校应用数学学报(A辑).2011 (第4期):415-422 [35]Shengfan Zhou.A random attractor for a stochastic second order lattice system with random coupled coefficients.Journal of Mathematical Analysis and Applications.2012,Vol.395 (No.1):42-55 [36]Zhaojuan Wang.Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise.International Journal of Modern Nonlinear Theory and Application.2015,Vol.4 (No.3):204-214 [37]Zhaojuan Wang.Random attractor of the stochastic strongly damped wave equation.Communications in Nonlinear Science and Numerical Simulation.2012,Vol.17 (No.4):1649-1658 [38]Zhaojuan Wang.Asymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains.Journal of Applied Mathematics and Physics.2015,Vol.3 (No.3):338-357 [39]Zhou, Shengfan.Random attractor and upper semi-continuity for Zakharov lattice system with multiplicative white noise.Journal of Difference Equations and Applications.2014,Vol.20 (No.2):312-338 [40]Zhou, Shengfan.Random attractors for stochastic retarded lattice systems.Journal of Difference Equations and Applications.2013,Vol.19 (No.9):1523-1543 [41]Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise.Discrete & Continuous Dynamical Systems - A.2018,Vol.38 (No.9):4767-4817 [42]Pullback Exponential Attractors for Non-autonomous Lattice Systems.Journal of Dynamics and Differential Equations [43]Wang, Zhaojuan.Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains..J. Appl. Anal. Comput..2015,Vol.5 (No.3):363-387 [44]Uniform Exponential Attractor for Second Order Lattice System with Quasi-Periodic External Forces in Weighted Space.International Journal of Bifurcation and Chaos [45]SHENGFAN ZHOU.UPPER-SEMICONTINUITY OF ATTRACTORS FOR REACTION-DIFFUSION EQUATION AND DAMPED WAVE EQUATION IN R~n PERTURBED BY SMALL MULTIPLICATIVE NOISES.Dynamic Systems and Applications.2013,Vol.22 (No.1) [46]Wang, Zhaojuan.Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces..Adv. Difference Equ..2016,Vol.2016 :310 [47]WENXIAN SHEN.ASYMPTOTIC DYNAMICS OF A CLASS OF COUPLED OSCILLATORS DRIVEN BY WHITE NOISES.Stochastics and Dynamics.2013,Vol.13 (No.4):1350002 [48]Wang, Zhaojuan.RANDOM ATTRACTOR FOR STOCHASTIC NON-AUTONOMOUS DAMPED WAVE EQUATION WITH CRITICAL EXPONENT.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.2017,Vol.37 (No.1):545-573 [49]Zhou, Shengfan.FRACTAL DIMENSION OF RANDOM ATTRACTOR FOR STOCHASTIC NON-AUTONOMOUS DAMPED WAVE EQUATION WITH LINEAR MULTIPLICATIVE WHITE NOISE.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.2016,Vol.36 (No.5):2887-2914 [50]Random Attractors for Non-autonomous Stochastic Lattice FitzHugh-Nagumo Systems with Random Coupled Coefficients.Taiwanese Journal of Mathematics.2016,Vol.20 (No.3):589-616

学术兼职

国际数学杂志《International Journal of Applied Mathematics and Applications》与《Journal of Applied Analysis and Computation》编委

推荐链接
down
wechat
bug