当前位置: X-MOL首页全球导师 国内导师 › 高光远

个人简介

教育经历 2005年---2009年 同济大学 工学学士 2009年---2011年 澳洲国立大学 应用统计学硕士 2012年---2016年 澳洲国立大学 统计学博士 工作经历 2012年---2012年 澳洲国立大学 助理研究员 2016年---2016年 天津贵金属交易所 研究员 2016年---2020年 中国人民大学 讲师 2020年---至今 中国人民大学 副教授 基金项目 国家自然科学基金项目(2020-2022):基于机器学习算法的非寿险个体准备金评估模型(71901207),主持。 北美精算师协会研究基金(2020-2021):Analytics of telematics car driving data,主持。 中国人民大学科学研究基金项目(2019):基于车联网大数据的汽车保险费率因子研究(19XNF023),主持。 国家社科基金重大项目(2017-2021):巨灾保险的精算统计模型及其应用研究(16ZDA052),参与。 教育部人文社会科学重点研究基地重大项目(2016-2020):基于大数据的精算统计模型与风险管理问题研究(16JJD910001),参与。 学术奖励 2020.01 中国人民大学优秀科研成果奖(著作) 2019.08 《保险研究》2018年度优秀论文

研究领域

寿险与非寿险精算;车联网数据分析;非寿险准备金评估模型;贝叶斯统计;MCMC

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Gao, G., Li, J.* (2023). Dependence modeling of frequency-severity of insurance claims using waiting time. Insurance: Mathematics and Economics. Meng, S., Wang, H., Shi, Y., Gao, G.* (2022). Improving automobile insurance claims frequency prediction with telematics car driving data. ASTIN Bulletin, 52: 363-391. Gao, G., Meng, S., Wüthrich, M. V.* (2022). What can we learn from telematics car driving data: A survey. Insurance: Mathematics and Economics, 104: 185-199. Gao, G., Wang, H., Wuthrich, M. V.* (2022). Boosting Poisson regression models with telematics car driving data. Machine Learning, 111: 243-272. Gao, G., Meng, S.*, Shi, Y. (2021). Dispersion modelling of outstanding claims with double Poisson regression models. Insurance: Mathematics and Economics, 101: 572-586. Gao, G., Shi, Y.* (2021). Age-coherent extensions of the Lee-Carter model. Scandinavian Actuarial Journal, 2021: 998-1016. Gao, G., Ho, K.-Y. and Shi, Y.* (2020). Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices. Pacific-Basin Finance Journal, 61. Gao, G.*, Wüthrich, M. V. and Yang, H. (2019). Evaluation of driving risk at different speeds. Insurance: Mathematics and Economics, 88: 108-119. Gao, G. and Wüthrich, M. V.* (2019). Convolutional neural network classification of telematics car driving data. Risks, 7: article 6. Gao, G., Meng, S.* and Shi, Y. (2019). Stochastic payments per claim incurred. North American Actuarial Journal, 23: 11-26. Gao, G.*, Meng, S. and Wüthrich, M. V. (2019). Claims frequency modeling using telematics car driving data. Scandinavian Actuarial Journal, 2019: 143-162. Gao, G. and Wüthrich, M. V.* (2018). Feature extraction from telematics car driving heatmaps. European Actuarial Journal, 8: 383-406. Meng, S. and Gao, G.* (2018). Compound Poisson claims reserving models: Extensions and inference. ASTIN Bulletin, 48(3): 1137-1156. Gao, G.* and Meng, S. (2018). Stochastic claims reserving via a Bayesian spline model with random loss ratio effects. ASTIN Bulletin, 48(1): 55-88. 高光远 *; 孟生旺 (2018). 基于车联网大数据的车险费率因子研究. 保险研究, 357(1): 90-100. 孟生旺 *; 李天博; 高光远 (2017). 基于机器学习算法的车险索赔概率与累积赔款预测. 保险研究, 354(10):42-53.

学术兼职

国际顶尖精算期刊《Insurance:Mathematics_and_Economics》、《ASTIN Bulletin》等匿名审稿人 全国工业统计学青年统计学家协会第一届理事会理事

推荐链接
down
wechat
bug