当前位置: X-MOL首页全球导师 国内导师 › 朱春宇

个人简介

朱春宇,教授,博导。入选江苏省特聘教授,于2019年加入中国矿业大学回国工作至今。回国前,旅日学习与工作11年,在日本北海道大学相继取得硕士与博士学位,之后获JSPS 外籍特聘研究员资助开展研究工作,2016年至2019年任职北海道大学助理教授。在日本工作期间,独立主持多项科研基金,包括3项日本政府的科研费项目;以个人身份获3项竞争性财团基金的研究助成奖励荣誉与经费资助。目前已在Green Chemistry,Journal of Materials Chemistry A,Chemical Engineering Journal,Applied Thermal Engineering,Solar Energy Materials and Solar Cells等学术期刊发表英文论文80余篇,其中第一/通讯作者论文近40篇。 科研项目 在研项目: 1.中国矿业大学海外引进人员科研启动费。 2.江苏省特聘教授,人才资助科研经费。 3.中国矿业大学,中央高校基本业务费。 4.江苏省自然科学基金,2020年青年项目。

研究领域

1. 热能存储与利用,传质传热加强;相变储热材料,热界面材料,热管理技术。 2. 电化学储能与应用,电池材料,电化学催化;锂离子电池,锂金属,锌电池。 3. 氢能与利用;储氢技术,制氢。 4. 生物质高附加值利用及其储能功能材料的制备与应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

第一或通讯作者(*)论文: 1.Zhu,R.;*Zhu,C.;Sheng,N.;Rao,Z.;Aoki,Y.;Habazaki,H.A widely applicable strategy to convert fabrics into lithiophilic textile current collector for dendrite-free and high-rate capable lithium metal anode.Chemical Engineering Journal 2020,124256. 2.Sheng,N.;Zhu,R.;Nomura,T.;Rao,Z.;*Zhu,C.;Aoki,Y.;Habazaki,H.;Akiyama,T.Anisotropically enhanced heat transfer properties of phase change material reinforced by graphene-wrapped carbon fibers.Solar Energy Materials and Solar Cells 2020,206,110280. 3.Sheng,N.;Rao,Z.;*Zhu,C.;Habazaki,H.Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds.Solar Energy Materials and Solar Cells 2020,205,110241. 4.Sheng,N.;Rao,Z.;*Zhu,C.;Habazaki,H.Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage.Applied Thermal Engineering 2020,164,114493. 5.Zhu,R.;Sheng,N.;Rao,Z.;*Zhu,C.;Aoki,Y.;Habazaki,H.Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight,flexible,hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal.Journal of Materials Chemistry A 2019,7(47),27066-27073. 6.Sheng,N.;Zhu,R.;Dong,K.;Nomura,T.;*Zhu,C.;Aoki,Y.;Habazaki,H.;Akiyama,T.Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability.Journal of Materials Chemistry A 2019,7(9),4934-4940. 7.Sheng,N.;Nomura,T.;*Zhu,C.;Habazaki,H.;Akiyama,T.Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity.Solar Energy Materials and Solar Cells 2019,192,8-15. 8.Kim,C.;*Zhu,C.;Aoki,Y.;Habazaki,H.Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors.Electrochimica Acta 2019,314,173-187. 9.Kim,C.;*Zhu,C.;Aoki,Y.;Habazaki,H.Exothermically Efficient Exfoliation of Biomass Cellulose to Value-Added N-Doped Hierarchical Porous Carbon for Oxygen Reduction Electrocatalyst.Industrial&Engineering Chemistry Research 2019,58(8),3047-3059. 10.*Zhu,C.;Takata,M.;Aoki,Y.;Habazaki,H.Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst.Chemical Engineering Journal 2018,350,278-289. 11.Sheng,N.;Han,C.-g.;*Zhu,C.;Akiyama,T.One-step solution combustion synthesis of K0.5Na0.5NbO3 powders at a large-scale.Ceramics International 2018,44(15),18279-18284. 12.Sheng,N.;Han,C.-g.;Lei,Y.;*Zhu,C.Controlled synthesis of Na0.44MnO2 cathode material for sodium ion batteries with superior performance through urea-based solution combustion synthesis.Electrochimica Acta 2018,283,1560-1567. 13.Cao,J.;*Zhu,C.;Aoki,Y.;Habazaki,H.Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors.ACS Sustainable Chemistry&Engineering 2018,6(6),7292-7303. 14.*Zhu,C.;Kim,C.;Aoki,Y.;Habazaki,H.Nitrogen-Doped Hierarchical Porous Carbon Architecture Incorporated with Cobalt Nanoparticles and Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction Reaction.Advanced Materials Interfaces 2017,4(19),1700583. 15.*Zhu,C.;Aoki,Y.;Habazaki,H.Co9S8 Nanoparticles Incorporated in Hierarchically Porous 3D Few-Layer Graphene-Like Carbon with S,N-Doping as Superior Electrocatalyst for Oxygen Reduction Reaction.Particle&Particle Systems Characterization 2017,34(11),1700296. 16.Han,C.-G.;*Zhu,C.;Sheng,N.;Aoki,Y.;Habazaki,H.;Akiyama,T.A facile one-pot synthesis of FeOx/carbon/graphene composites as superior anode materials for lithium-ion batteries.Electrochimica Acta 2017,235,88-97. 17.Han,C.-G.;*Zhu,C.;Saito,G.;Sheng,N.;Nomura,T.;*Akiyama,T.Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries.Electrochimica Acta 2017,224,71-79. 18.Han,C.-G.;*Zhu,C.;Aoki,Y.;Habazaki,H.;Akiyama,T.MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis.Green Energy&Environment 2017,2(4),377-386. 19.Han,C.-G.;Sheng,N.;*Zhu,C.;Akiyama,T.Cotton-assisted combustion synthesis of Fe3O4/C composites as excellent anode materials for lithium-ion batteries.Materials Today Energy 2017,5,187-195. 20.*Zhu,C.;Han,C.-g.;Saito,G.;Akiyama,T.MnO nanocrystals incorporated in a N-containing carbon matrix for Li ion battery anodes.RSC Advances 2016,6(36),30445-30453. 21.*Zhu,C.;Han,C.-g.;Saito,G.;Akiyama,T.Facile synthesis of MnO/carbon composites by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode.Journal of Alloys and Compounds 2016,689,931-937. 22.*Zhu,C.;Akiyama,T.Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes.Green Chemistry 2016,18(7),2106-2114. 23.Zhu,C.;Sheng,N.;Akiyama,T.MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode.RSC Advances 2015,5(27),21066-21073. 24.Zhu,C.;Saito,G.;Akiyama,T.A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon matrix for use as a high-performance lithium ion battery anode material.Journal of Alloys and Compounds 2015,633(0),424-429. 25.Zhu,C.;Saito,G.;Akiyama,T.Urchin-like hollow-structured cobalt oxides with excellent anode performance for lithium-ion batteries.Journal of Alloys and Compounds 2015,646(0),639-646. 26.Zhu,C.;Han,C.-g.;Akiyama,T.Controlled synthesis of LiNi0.5Mn1.5O4 cathode materials with superior electrochemical performance through urea-based solution combustion synthesis.RSC Advances 2015,5(62),49831-49837. 27.Zhu,C.;Nobuta,A.;Saito,G.;Nakatsugawa,I.;Akiyama,T.Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries.Advanced Powder Technology 2014,25(1),342-347. 28.Zhu,C.;Akiyama,T.Designed synthesis of LiNi0.5Mn1.5O4 hollow microspheres with superior electrochemical properties as high-voltage cathode materials for lithium-ion batteries.RSC Advances 2014,4(20),10151-10156. 29.Zhu,C.;Akiyama,T.Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi0.5Mn1.5O4 as a high-voltage cathode material for lithium-ion batteries.Electrochimica Acta 2014,127(0),290-298. 30.Zhu,C.;Saito,G.;Akiyama,T.A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries.Journal of Materials Chemistry A 2013,1(24),7077-7082. 31.Zhu,C.;Nobuta,A.;Nakatsugawa,I.;Akiyama,T.Solution combustion synthesis of LaMO3(M=Fe,Co,Mn)perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode.International Journal of Hydrogen Energy 2013,38(30),13238-13248. 32.Zhu,C.;Nobuta,A.;Ju,Y.-W.;Ishihara,T.;Akiyama,T.Solution combustion synthesis of Ce0.6Mn0.3Fe0.1O2 for anode of SOFC using LaGaO3-based oxide electrolyte.International Journal of Hydrogen Energy 2013,38(30),13419-13426. 33.Zhu,C.;Hosokai,S.;Akiyama,T.Direct synthesis of MgH2 nanofibers from waste Mg.International Journal of Hydrogen Energy 2012,37(10),8379-8387. 34.Zhu,C.;Akiyama,T.Zebra-Striped Fibers in Relation to the H2 Sorption Properties for MgH2 Nanofibers Produced by a Vapor–Solid Process.Crystal Growth&Design 2012,12(8),4043-4052. 35.Zhu,C.;Sakaguchi,N.;Hosokai,S.;Watanabe,S.;Akiyama,T.In situ transmission electron microscopy observation of the decomposition of MgH2 nanofiber.International Journal of Hydrogen Energy 2011,36(5),3600-3605. 36.Zhu,C.;Hosokai,S.;Akiyama,T.Growth Mechanism for the Controlled Synthesis of MgH2/Mg Crystals via a Vapor–Solid Process.Crystal Growth&Design 2011,11(9),4166-4174. 37.Zhu,C.;Hosokai,S.;Matsumoto,I.;Akiyama,T.Shape-Controlled Growth of MgH2/Mg Nano/Microstructures Via Hydriding Chemical Vapor Deposition.Crystal Growth&Design 2010,10(12),5123-5128. 38.Zhu,C.;Hayashi,H.;Saita,I.;Akiyama,T.Direct synthesis of MgH2 nanofibers at different hydrogen pressures.International Journal of Hydrogen Energy 2009,34(17),7283-7290. 其他合作论文: 1.Jeong,S.;Yamaguchi,T.;Okamoto,M.;Zhu,C.;Habazaki,H.;Nagayama,M.;Aoki,Y.Proton Pumping Boosts Energy Conversion in Hydrogen-Permeable Metal-Supported Protonic Fuel Cells.ACS Applied Energy Materials 2020. 2.Yamada,N.;Kowalski,D.;Koyama,A.;Zhu,C.;Aoki,Y.;Habazaki,H.High dispersion and oxygen reduction reaction activity of Co3O4 nanoparticles on platelet-type carbon nanofibers.RSC Advances 2019,9(7),3726-3733. 3.Wang,N.;Hinokuma,S.;Ina,T.;Toriumi,H.;Katayama,M.;Inada,Y.;Zhu,C.;Habazaki,H.;Aoki,Y.Incorporation of Bulk Proton Carriers in Cubic Perovskite Manganite Driven by Interplays of Oxygen and Manganese Redox.Chemistry of Materials 2019,31(20),8383-8393. 4.Sheng,N.;Zhu,C.;Sakai,H.;Hasegawa,Y.;Akiyama,T.;Nomura,T.Modified preparation of Al2O3@Al-Si microencapsulated phase change material for high-temperature thermal storage with high durability over 3000 cycles.Solar Energy Materials and Solar Cells 2019,200,109925. 5.Sheng,N.;Zhu,C.;Sakai,H.;Akiyama,T.;Nomura,T.Synthesis of Al-25 wt%Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage.Solar Energy Materials and Solar Cells 2019,191,141-147. 6.Sheng,N.;Dong,K.;Zhu,C.;Akiyama,T.;Nomura,T.Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler.Materials Chemistry and Physics 2019,229,87-91. 7.Sato,Y.;Kobayashi,H.;Kowalski,D.;Koyama,A.;Zhu,C.;Aoki,Y.;Suto,M.;Habazaki,H.Ultra-rapid formation of crystalline anatase TiO2 films highly doped with substrate species by a cathodic deposition method.Electrochemistry Communications 2019,108,106561. 8.Liu,C.;Xu,Z.;Song,Y.;Lv,P.;Zhao,J.;Liu,C.;Huo,Y.;Xu,B.;Zhu,C.;Rao,Z.A novel shape-stabilization strategy for phase change thermal energy storage.Journal of Materials Chemistry A 2019,7(14),8194-8203. 9.Fadillah,L.;Takase,K.;Kobayashi,H.;Turczyniak-Surdacka,S.;Strawski,M.;Kowalski,D.;Zhu,C.;Aoki,Y.;Habazaki,H.The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten.Electrochimica Acta 2019,309,274-282. 10.Sheng,N.;Zhu,C.;Saito,G.;Hiraki,T.;Haka,M.;Hasegawa,Y.;Sakai,H.;Akiyama,T.;Nomura,T.Development of a microencapsulated Al–Si phase change material with high-temperature thermal stability and durability over 3000 cycles.Journal of Materials Chemistry A 2018,6(37),18143-18153. 11.Shahzad,K.;Kowalski,D.;Zhu,C.;Aoki,Y.;Habazaki,H.Ex Situ Evidence for the Role of a Fluoride-Rich Layer Switching the Growth of Nanopores to Nanotubes:A Missing Piece of the Anodizing Puzzle.ChemElectroChem 2018,5(4),610-618. 12.Nakayama,K.;Koyama,A.;Zhu,C.;Aoki,Y.;Habazaki,H.Rapid and Repeatable Self-Healing Superoleophobic Porous Aluminum Surface Using Infiltrated Liquid Healing Agent.Advanced Materials Interfaces 2018,5(19),1800566. 13.Kura,C.;Fujimoto,S.;Kunisada,Y.;Kowalski,D.;Tsuji,E.;Zhu,C.;Habazaki,H.;Aoki,Y.Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction.Journal of Materials Chemistry A 2018,6(6),2730-2741. 14.Kobayashi,T.;Kuroda,K.;Jeong,S.;Kwon,H.;Zhu,C.;Habazaki,H.;Aoki,Y.Analysis of the Anode Reaction of Solid Oxide Electrolyzer Cells with BaZr0.4Ce0.4Y0.2O3-δElectrolytes and Sm0.5Sr0.5CoO3-δAnodes.Journal of The Electrochemical Society 2018,165(5),F342-F349. 15.Kasuga,A.;Koyama,A.;Nakayama,K.;Kowalski,D.;Zhu,C.;Aoki,Y.;Habazaki,H.Fabrication of Superoleophobic Surface on Stainless Steel by Hierarchical Surface Roughening and Organic Coating.ISIJ International 2018,advpub. 16.Jeong,S.;Kobayashi,T.;Kuroda,K.;Kwon,H.;Zhu,C.;Habazaki,H.;Aoki,Y.Evaluation of thin film fuel cells with Zr-rich BaZrxCe0.8−xY0.2O3−δelectrolytes(x≥0.4)fabricated by a single-step reactive sintering method.RSC Advances 2018,8(46),26309-26317. 17.Cao,J.-H.;Sato,Y.;Kowalski,D.;Zhu,C.;Aoki,Y.;Cheng,Y.;Habazaki,H.Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer.Journal of Solid State Electrochemistry 2018. 18.Aoki,Y.;Yamaguchi,T.;Kobayashi,S.;Kowalski,D.;Zhu,C.;Habazaki,H.High-Efficiency Direct Ammonia Fuel Cells Based on BaZr0.1Ce0.7Y0.2O3−δ/Pd Oxide-Metal Junctions.Global Challenges 2018,2(1),1700088-n/a. 19.Ohyama,J.;Zhu,C.;Saito,G.;Haga,M.;Nomura,T.;Sakaguchi,N.;Akiyama,T.Combustion synthesis of YAG:Ce phosphors via the thermite reaction of aluminum.Journal of Rare Earths 2017. 20.Nomura,T.;Sheng,N.;Zhu,C.;Saito,G.;Hanzaki,D.;Hiraki,T.;Akiyama,T.Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation.Applied Energy 2017,188,9-18. 21.Nakayama,K.;Hiraga,T.;Zhu,C.;Tsuji,E.;Aoki,Y.;Habazaki,H.Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes.Applied Surface Science 2017,423,968-976. 22.Kura,C.;Kunisada,Y.;Tsuji,E.;Zhu,C.;Habazaki,H.;Nagata,S.;Müller,M.P.;De Souza,R.A.;Aoki,Y.Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity.Nature Energy 2017,2(10),786-794. 23.Habazaki,H.;Kobayashi,K.;Tsuji,E.;Zhu,C.;Aoki,Y.;Nagata,S.Highly increased capacitance and thermal stability of anodic oxide films on oxygen-incorporated Zr-Ti alloy.Journal of Solid State Electrochemistry 2017,1-10. 24.Aoki,Y.;Yamaguchi,T.;Kobayashi,S.;Zhu,C.;Habazaki,H.High Efficiency Direct Ammonia Type Fuel Cells based on BaZrxCe0.8-XY0.2O3/Pd Oxide-Metal Junctions.ECS Transactions 2017,78(1),1511-1515. 25.Aoki,Y.;Yamaguchi,T.;Kobayashi,S.;Zhu,C.;Habazaki,H.High Efficiency Hydrogen Membrane Fuel Cells with BaCe0.8Y0.2O3-δElectrolyte Thin Films and Pd1-xAgx Solid Anodes.Journal of The Electrochemical Society 2017,164(6),F577-F581. 26.Aoki,Y.;Kuroda,K.;Hinokuma,S.;Kura,C.;Zhu,C.;Tsuji,E.;Nakao,A.;Wakeshima,M.;Hinatsu,Y.;Habazaki,H.Low-Temperature Oxygen Storage of CrIV–CrV Mixed-Valence YCr1–xPxO4−δDriven by Local Condensation around Oxygen-Deficient Orthochromite.Journal of the American Chemical Society 2017,139(32),11197-11206. 27.Wang,T.;Wang,S.;Luo,R.;Zhu,C.;Akiyama,T.;Zhang,Z.Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage.Applied Energy 2016,171,113-119. 28.Shahzad,K.;Zhu,C.;Tsuji,E.;Aoki,Y.;Nagata,S.;Habazaki,H.Growth of Barrier Type Anodic Film on Magnesium in Ethylene Glycol-Water Mixed Electrolytes Containing Fluoride and Phosphate.Materials Transactions 2016,57(9),1552-1559. 29.Saito,G.;Zhu,C.;Han,C.-G.;Sakaguchi,N.;Akiyama,T.Solution combustion synthesis of porous Sn–C composite as anode material for lithium ion batteries.Advanced Powder Technology 2016,27(4),1730-1737. 30.Nomura,T.;Zhu,C.;Nan,S.;Tabuchi,K.;Wang,S.;Akiyama,T.High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network.Applied Energy 2016,179,1-6. 31.Han,C.-G.;Zhu,C.;Saito,G.;Akiyama,T.Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries.Electrochimica Acta 2016,209,225-234. 32.Fukahori,R.;Nomura,T.;Zhu,C.;Sheng,N.;Okinaka,N.;Akiyama,T.Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials.Applied Energy 2016,163,1-8. 33.Fukahori,R.;Nomura,T.;Zhu,C.;Sheng,N.;Okinaka,N.;Akiyama,T.Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage.Applied Energy 2016,170,324-328. 34.Saito,G.;Nakasugi,Y.;Sakaguchi,N.;Zhu,C.;Akiyama,T.Glycine–nitrate-based solution-combustion synthesis of SrTiO3.Journal of Alloys and Compounds 2015,652,496-502. 35.Nomura,T.;Zhu,C.;Sheng,N.;Tabuchi,K.;Sagara,A.;Akiyama,T.Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2.Solar Energy Materials and Solar Cells 2015,143,424-429. 36.Nomura,T.;Zhu,C.;Sheng,N.;Saito,G.;Akiyama,T.Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage.Sci.Rep.2015,5. 37.Nomura,T.;Zhu,C.;Sheng,N.;Murai,R.;Akiyama,T.Solution combustion synthesis of Brownmillerite-type Ca2AlMnO5 as an oxygen storage material.Journal of Alloys and Compounds 2015,646(0),900-905. 38.Nomura,T.;Zhu,C.;Sagara,A.;Okinaka,N.;Akiyama,T.Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials.Applied Thermal Engineering 2015,75(0),481-486. 39.Nomura,T.;Tabuchi,K.;Zhu,C.;Sheng,N.;Wang,S.;Akiyama,T.High thermal conductivity phase change composite with percolating carbon fiber network.Applied Energy 2015,154(0),678-685. 40.Luo,R.;Wang,S.;Wang,T.;Zhu,C.;Nomura,T.;Akiyama,T.Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation.Energy and Buildings 2015,108,373-380. 41.Han,C.-G.;Zhu,C.;Saito,G.;Akiyama,T.Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries.Advanced Powder Technology 2015,26(2),665-671. 42.Han,C.-G.;Zhu,C.;Saito,G.;Akiyama,T.Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries.RSC Advances 2015,5(89),73315-73322. 43.Deguchi,M.;Yasuda,N.;Zhu,C.;Okinaka,N.;Akiyama,T.Combustion synthesis of TiFe by utilizing magnesiothermic reduction.Journal of Alloys and Compounds 2015,622(0),102-107. 44.Saito,G.;Zhu,C.;Akiyama,T.Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique.Advanced Powder Technology 2014,25(2),728-732.

推荐链接
down
wechat
bug