研究领域
Function & Evolution of Biocatalysts
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
J. Spielmann-Ryser; M. Moser; P. Kast; H. Weber, Mol. Gen. Genet. 1991, 226, 441-448.
Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli.
P. Kast; H. Hennecke, J. Mol. Biol. 1991, 222, 99-124.
Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations.
P. Kast; C. Wehrli; H. Hennecke, FEBS Lett. 1991, 293, 160-163.
Impaired affinity for phenylalanine in Escherichia coli phenylalanyl-tRNA synthetase mutant caused by Gly-to-Asp exchange in motif 2 of class II tRNA synthetases.
P. Kast; B. Keller; H. Hennecke, J. Bacteriol. 1992, 174, 1686-1689.
Identification of the pheS5 mutation, which causes thermosensitivity of Escherichia coli mutant NP37.
B. Keller; P. Kast; H. Hennecke, FEBS Lett. 1992, 301, 83-88. -- Erratum: FEBS Lett.1992, 310, 204.
Cloning and sequence analysis of the phenylalanyl-tRNA synthetase genes (pheST) from Thermus thermophilus.
P. Kast, Gene 1994, 138, 109-114.
pKSS — A second-generation general purpose cloning vector for efficient positive selection of recombinant clones.
M. Ibba; P. Kast; H. Hennecke, Biochemistry 1994, 33, 7107-7112.
Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase.
P. Kast; J. D. Hartgerink; M. Asif-Ullah; D. Hilvert, J. Am. Chem. Soc. 1996, 118, 3069-3070.
Electrostatic catalysis of the Claisen rearrangement: probing the role of Glu78 in Bacillus subtilis chorismate mutase by genetic selection.
P. Kast; M. Asif-Ullah; D. Hilvert, Tetrahedron Lett. 1996, 37, 2691-2694.
Is chorismate mutase a prototypic entropy trap? — Activation parameters for the Bacillus subtilis enzyme.
P. Kast; M. Asif-Ullah; N. Jiang; D. Hilvert, Proc. Natl. Acad. Sci. USA 1996, 93, 5043-5048.
Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis.
P. Kast; D. Hilvert, Pure Appl. Chem. 1996, 68, 2017-2024.
Genetic selection strategies for generating and characterizing catalysts.
P. Kast; D. Hilvert, Curr. Opin. Struct. Biol. 1997, 7, 470-479.
3D structural information as a guide to protein engineering using genetic selection.
P. Kast; Y. B. Tewari; O. Wiest; D. Hilvert; K. N. Houk; R. N. Goldberg, J. Phys. Chem. B 1997, 101, 10976-10982.
Thermodynamics of the conversion of chorismate to prephenate: Experimental results and theoretical predictions.
C. Grisostomi; P. Kast; R. Pulido; J. Huynh; D. Hilvert, Bioorg. Chem. 1997, 25, 297-305.
Efficient in vivo synthesis and rapid purification of chorismic acid using an engineered Escherichia coli strain.
G. MacBeath; P. Kast, Biotechniques 1998, 24, 789-794.
UGA read-through artifacts — when popular gene expression systems need a pATCH.
G. MacBeath; P. Kast; D. Hilvert, Protein Sci. 1998, 7, 325-335.
Exploring sequence constraints on an interhelical turn using in vivo selection for catalytic activity.
G. MacBeath; P. Kast; D. Hilvert, Science 1998, 279, 1958-1961.
Redesigning enzyme topology by directed evolution.
G. MacBeath; P. Kast; D. Hilvert, Biochemistry 1998, 37, 10062-10073.
A small, thermostable, and monofunctional chorismate mutase from the archeon Methanococcus jannaschii.
G. MacBeath; P. Kast; D. Hilvert, Protein Sci. 1998, 7, 1757-17657.
Probing enzyme quaternary structure by combinatorial mutagenesis and selection.
P. Mattei; P. Kast; D. Hilvert, Eur. J. Biochem. 1999, 261, 25-32.
Bacillus subtilis chorismate mutase is partially diffusion-controlled.