当前位置: X-MOL首页全球导师 国内导师 › 曹军

个人简介

1986年生,湖南衡阳人,群众,。 教育背景与工作经历 -北京师范大学, 博士 2011-2014年 -北京师范大学, 硕士 2008-2011年 -中国矿业大学, 学士 2004-2008年 主持项目 1. 国家留学基金委国家公派博士后项目,项目批准号:CSC NO. 201708330186,执行时间:2017-2019年; 2.国家自然科学基金青年基金项目,项目名称: 相关于高阶微分算子的函数空间实变理论及其应用,项目批准号: 11501506, 执行时间:2016-2018年; 3. 浙江工业大学2014年度校级自然科学研究基金-重点项目,项目名称:Hardy空间新实变理论及其应用,项目批准号:2014XZ011,执行时间:2014-2016年. 成果 1. 浙江工业大学第二批“青年英才支持计划” 2. 浙江工业大学第十届青年教师教学技能比赛优秀奖 3. 理学院第八届青年教师教学技能比赛一等奖 4. 2015年度理学院优秀教师 5. 2014/2015(学)年校级优秀班主任

研究领域

研究方向为调和分析和度量测度空间上的分析

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Cao, Jun, L. Liu, D. Yang, Dachun; Yuan, Wen Intrinsic structures of certain Musielak-Orlicz Hardy spaces. J. Geom. Anal. 28 (2018), no. 4, 2961–2983. 2. Cao, Jun; Ky, Luong Dang; Yang, Dachun Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets. Commun. Contemp. Math. 20 (2018), no. 3, 1750025, 30 pp. 3. Cao, Jun; Mayboroda, Svitlana; Yang, Dachun Local Hardy spaces associated with inhomogeneous higher order elliptic operators. Anal. Appl. (Singap.) 15 (2017), no. 2, 137–224. 4. Cao, Jun; Chang, Der-Chen; Fu, Zunwei; Yang, Dachun Real interpolation of weighted tent spaces. Appl. Anal. 95 (2016), no. 11, 2415–2443. 5. Cao, Jun; Mayboroda, Svitlana; Yang, Dachun Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators. Forum Math. 28 (2016), no. 5, 823–856. 6. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Riesz transform characterizations of Musielak-Orlicz-Hardy spaces. Trans. Amer. Math. Soc. 368 (2016), no. 10, 6979–7018. 7. Cao, Jun; Fu, Zunwei; Jiang, Renjin; Yang, Dachun Hardy spaces associated with a pair of commuting operators. Forum Math. 27 (2015), no. 5, 2775–2824. 8. Zhang, Junqiang; Cao, Jun; Jiang, Renjin; Yang, Dachun Non-tangential maximal function characterizations of Hardy spaces associated with degenerate elliptic operators. Canad. J. Math. 67 (2015), no. 5, 1161–1200. 9. Cao, Jun; Chang, Der-Chen; Wu, Huoxiong; Yang, Dachun Weak Hardy spaces WHpL(ℝn) associated to operators satisfying k-Davies-Gaffney estimates. J. Nonlinear Convex Anal. 16 (2015), no. 7, 1205–1255. 10. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Estimates for second-order Riesz transforms associated with magnetic Schrödinger operators on Musielak-Orlicz-Hardy spaces. Appl. Anal. 93 (2014), no. 11, 2519–2545. 11. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Commun. Pure Appl. Anal. 13 (2014), no. 4, 1435–1463. 12. Bui, The Anh; Cao, Jun; Ky, Luong Dang; Yang, Dachun; Yang, Sibei Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1 (2013), 69–129. 13. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Boundedness of fractional integrals on weighted Orlicz-Hardy spaces. Math. Methods Appl. Sci. 36 (2013), no. 15, 2069–2085. 14. The Anh Bui; Cao, Jun; Ky, Luong Dang; Yang, Dachun; Yang, Sibei Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J. Math. 17 (2013), no. 4, 1127–1166. 15. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Amer. Math. Soc. 365 (2013), no. 9, 4729–4809. 16. Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Boundedness of generalized Riesz transforms on Orlicz-Hardy spaces associated to operators. Integral Equations Operator Theory 76 (2013), no. 2, 225–283. 17. Cao, Jun; Yang, Dachun; Yang, Sibei Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators. Rev. Mat. Complut. 26 (2013), no. 1, 99–114. 18. Cao, Jun; Yang, DaChun Hardy spaces HpL(ℝn) associated with operators satisfying k-Davies-Gaffney estimates. Sci. China Math. 55 (2012), no. 7, 1403–1440. 19. Cao, Jun; Liu, Yu; Yang, Dachun Hardy spaces H1ℒ(ℝn) associated to Schrödinger type operators (−Δ)2+V2. Houston J. Math. 36 (2010), no. 4, 1067–1095.

推荐链接
down
wechat
bug