当前位置: X-MOL首页全球导师 国内导师 › 魏凤英

个人简介

个人简介 魏凤英,1976年生,女,吉林四平人,博士,教授,硕导。2006年7月获理学博士学位,并于同月任教于福州大学数学与计算机科学学院。现任数学系副主任,福建省生物数学学会第二届理事。目前的主要科研兴趣:随机微分方程及其在生物数学中的应用、生态种群模型的持久性、绝灭性以及稳定性等、泛函微分方程的稳定性等。 任教期间,2007年度获福州大学学术新人奖,2008年,参加范更华教授主持的离散数学及其应用“211工程”重点学科团队。曾主持国家自然科学基金两项(11201075,10726062),福建省自然科学基金三项(2007J0180,2010J01005,2016J01015),福州大学科技发展基金两项(2007-XQ-18,2010-XQ-24),福州大学人才基金一项(XRC-0630);曾参与国家自然科学基金三项(61773122,11601085,10671031),教育部基金一项(10YJA630037),福建省自然科学基金一项(2011J05004),福建省教育厅四项(JA12051、JA09048S、JB08028、JB08029)、福建省社科规划办一项(2010B117)及福州大学科技发展基金两项(2010-XY-18、2009-XY-19)。累计发表科研论文90余篇,其中SCI收录20余篇,国内一类及核心期刊收录50余篇。参加国内外学术会议及学术交流访问共计20余次,指导研究生23名,其中已毕业19名,4名在读。 工作经历: 2006年8月至2009年8月,福州大学,数学与计算机科学学院,讲师,硕导; 2009年9月至2014年6月,福州大学,数学与计算机科学学院,副教授,硕导; 2014年7月至今,福州大学,数学与计算机科学学院,教授,硕导; 2015年8月至2016年8月,赫尔辛基大学,数学与统计系,访问教授; 2007年2-3月,赫尔辛基大学,数学与统计系,访问教授。 教育经历: 1996年9月至2000年7月,毕业于吉林师范大学,获理学学士学位, 2000年9月至2003年7月,毕业于东北师范大学,获理学硕士学位, 2003年9月至2006年7月,毕业于东北师范大学,获理学博士学位。 科研兴趣: 1. 随机泛函微分方程理论及应用:研究随机系统解的存在唯一性、稳定性等问题; 2. 生物数学:研究生态系统的周期解、概周期解、持久性、稳定性等问题; 3. 泛函微分方程理论及应用:研究时滞系统的周期解、稳定性等问题。 主讲课程 高等代数、线性代数、专业英语、微分方程稳定性理论、随机种群模型及相关研究进展

研究领域

随机微分方程及其应用、生物数学、泛函微分方程及其应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Wei Fengying, Wang Ke, Uniform persistence of asymptotically periodic multispecies competition predator pray systems with Holling III type functional response, Applied Mathematics and Computation, 2005, 170(2): 994-998. [2] Gao Haiyin, Wang Ke, Wei Fengying, Ding Xiaohua, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Application, 2006, 7(5): 1268-1283. [3] Wei Fengying, Wang Ke, Asymptotically periodic solution of n-species cooperation system with time delay, Nonlinear Analysis: Real World Application, 2006, 7(4): 591-596. [4] Wei Fengying, Wang Ke, Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka–Volterra diffusion system, Applied Mathematics and Computation, 2006, 182(1): 161-165. [5] Wei Fengying, Wang Ke, Permanence of variable coefficients predator-prey system with stage structure, Applied Mathematics and Computation, 2006, 180(2): 594-598. [6] Wei Fengying, Wang Ke, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, Journal of Mathematics Analysis and Application, 2007, (331): 516-531. [7] Wei Fengying, Wang Ke, Positive periodic solutions of an n-species ecological system with infinite delay, Journal of Computational and Applied Mathematics, 2007, 208: 362-372. [8] Wei Fengying, Wang Ke, Persistence of some stage structured ecosystems with finite and infinite delay, Applied Mathematics and Computation, 2007, 189(1): 902-909. [9] Wei Fengying, Wang Ke, The periodic solution of functional differential equations with infinite delay, Nonlinear Analysis: Real World Applications, 2010,11(4): 2669-2674. [10] Wei Fengying, Lin Yangrui, Que Lulu, Chen Yingying, Wu Yunping, Xue Yuanfu, Periodic solution and global stability for a nonautonomous competitive Lotka-Volterra diffusion system, Applied Mathematics and Computation, 2010, 216(10): 3097-3104. [11] Fengying Wei, Existence of multiple positive periodic solutions to a periodic predator-prey system with harvesting terms and Hollling III type functional response, Communications in Nonlinear Science and Numerical Simulations, 2011, 16(4): 2130-2138. [12] Fengying Wei, Yuhua Cai, Existence, uniqueness and stability of the solution to neutral stochastic functional differential equations with infinite delay under non-Lipschitz conditions, Advances in Difference Equations, 2013, 151, MR3071991. [13] Fengying Wei, Yuhua Cai, Global asymptotic stability of stochastic nonautonomous Lotka-Volterra models with infinite delay, Abstract and Applied Analysis, 2013, 351676, http://dx.doi.org/10.1155/2013/351676. [14] Fengying Wei, Lanqi Wu, and Yuzhi Fang, Stability and Hopf bifurcation of delayed predator-prey system incorporating harvesting, Abstract and Applied Analysis, 2014, 624162, doi:10.1155/2014/624162. [15] Fengying Wei, Qiuyue Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 2016, 40(1): 126-134. [16] Fengying Wei, Fangxiang Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A: Statistical Mechanics and its Applications, 2016, 453: 99-107. [17] Fengying Wei, Stefan A.H.Geritz, Jiaying Cai, A stochastic single-species population model with partial population tolerance in a polluted environment, Applied Mathematics Letters, 2017, 63: 130-136. [18] Jiamin Liu, Fengying Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Physica A: Statistical Mechanics and its Applications, 2016, 464: 241-250. [19] Fengying Wei, Jiamin Liu, Long-time behavior of a stochastic epidemic model with varying population size, Physica A: Statistical Mechanics and its Applications, 2017, 470: 146-153. [20] Fengying Wei, Qiuyue Fu, Globally asymptotic stability of predator-prey model with stage structure incorporating prey refuge, International Journal of Biomathematics, 2016, 9(4): 1650058, doi: 10.1142/S1793524516500583. [21] Lihong Chen, Fengying Wei, Persistence and distribution of a stochastic susceptible-infected-recovered epidemic model with varying population size, Physica A: Statistical Mechanics and its Applications, 2017, 483: 386-397. [22] Fengying Wei, Lihong Chen, Psychological effect on single-species population models in a polluted environment, Mathematical Biosciences, 2017, 290: 22-30. [23] Lihong Chen, Fengying Wei, Analysis of a susceptible-exposed-infected epidemic model with random perturbation and varying population size, Annals of Applied Mathematics, 2017, 33(2): 130-138. [24] Rui Xue, Fengying Wei, Persistence and extinction of a stochastic SIS epidemic model with double epidemic hypothesis, Annals of Applied Mathematics, 2017, 33(1): 77-89.

推荐链接
down
wechat
bug