当前位置: X-MOL首页全球导师 国内导师 › 常安

个人简介

个人简介 常安,男,1962年生,博士研究生毕业,教授,博士生导师。1983年6月毕业于青海师范大学,获学士学位学位;1990年获新疆大学硕士学位;1998年6月毕业于四川大学,获博士学位。主要从事图论领域中的图与超图谱理论及其应用等方向的基础理论研究。目前的研究工作主要集中在超图的张量谱理论及其应用研究方面。至今已在国内外专业期刊发表研究论文60余篇,曾经承担或作为主要研究成员参加了2项国家“973”课题和10多项国家自然科学基金项目的研究工作。1995年获青海省科技进步三等奖,2004年获福建省科学技术二等奖。 承担或参加的科研项目 1. 2017.1-2020.12 图与超图若干划分问题研究, 国家自然科学基金面上项目(研究成员) 2. 2015.1-2018.12 超图的张量表示及其谱理论研究 国家自然科学基金面上项目(负责人) 3. 2014.1-2018.12 网络设计中的离散数学方法 国家自然科学基金重点项目(研究成员) 4. 2010.11-2015.10 大规模集成电路物理设计中关键应用数学理论和方法 国家科技部“973”课题(研究成员) 5. 2006.9-2011.8 大规模集成电路设计中的图论与代数方法 国家科技部“973”课题(研究成员) 6. 2010.1-2013.12 极值图论 国家自然科学基金重点项目(研究成员) 7. 2005.1-2008.12 子图覆盖与子图存在性的若干问题 国家自然科学基金重点项目(研究成员) 8. 2009.1-2011.12 图与超图谱理论的若干应用问题研究 国家自然科学基金面上项目(负责人) 9. 2004.1-2006.12 整数流、子图覆盖与代数图论 国家自然科学基金面上项目(研究成员) 10. 2003.1-2004.12 图论在数学化学中的应用 国家自然科学基金面上项目(研究成员) 11. 2000.1-2002.12 图、多面体与数学化学 国家自然科学基金面上项目(研究成员) 12. 2005.9-2007.8 图的若干拓扑指标及相关问题的研究 福建省自然科学基金(负责人) 13. 2002.1-2004.12 某些分子图类能量及度距离问题的研究 福建省教育厅科技项目(负责人) 14. 1999-2001 特殊分子图类的拓扑性质研究 福建省教育厅科技项目(负责人) 获奖成果 图论研究中的若干问题,2004年福建省科学技术奖二等奖(1) 图的色等价与色唯一性,1995年青海省科技进步三等奖(2) Bounds on the second largest eigenvalue of a tree with perfect matchings,福建省第五届自然科学优秀论文二等奖 主讲课程 高等代数、组合数学、图论

研究领域

图论及其应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

已发表的主要研究论文 [1] Wei Li, An Chang, The effect on the spectral radius of r-graphs by grafting or contracting edges, Linear Algebra and its Applications,597,2020, 1-17. [2] Sarula Chang , An Chang, Yirong Zheng,The leaf-free graphs with nullity 2c(G) – 1,Discrete Applied Mathematics,277,(2020), 44-54. [3] Yuan Houa, An Chang, Lei Zhang, A homogeneous polynomial associated with general hypergraphs and its applications, Linear Algebra and its Applications,591,2020, 72-86. [4] Lei ZHANG, An CHANG, Spectral radius of r-uniform supertrees with perfect matchings, Front. Math. China, 2018, 13(6): 1489-1499. [5] Yuan. Hou, An Chang, Lei Zhang,Largest H-eigenvalue of uniform s-hypertrees, FRONTIERS OF MATHEMATICS IN CHINA, Vol. 13 (2018) , No.2, 301-312. [6] J. Li, An Chang, Bounds on Normalized Laplacian Eigenvalues of Graphs, Advances in Mathematics (China), Vol.47, No.1(2018), 51-55. [7] Bo Deng, An Chang, The higher Balaban index on weighted matrix, ARS COMBINATORIA, 137 (2018), 395-402. [8] Deng, Bo, An, Chang, Zhao, Haixing, Spectral determination of a class of tricyclic graphs. Ars Combin. 131(2017),123–141. [9] Wei Li, Joshua Cooper and An Chang, Analytic connectivity of k-uniform hypergraphs, Linear and Multilinear Algebra, (2017), no. 6, 1247–1259 [10] Wei Li, An Chang, Upper Bounds for the Z-spectral Radius of Nonnegative Tensors, ADVANCES IN MATHEMATICS (CHINA), Vol.45, No.6(2016), 912-918. [11] Sa Rula, An Chang, and Yirong Zheng, The extremal graphs with respect to their nullity, Journal of Inequalities and Applications, 71 (2016), DOI 10.1186/s13660-016-1018-z [12] Yirong Zheng, An Chang and Jianxi Li, On the sum of the two largest Laplacian eigenvalues of unicyclic graphs, Journal of Inequalities and Applications, 275 (2015), DOI 10.1186/s13660-015-0794-1 [13] J. Li,J. Guo,W.C. Shiu,A. Chang,Six classes of trees with largest normalized algebraic connectivity,Linear Algebra and its Applications,452 (2014) 318–327 [14] J. Li,J. Guo,W.C. Shiu,A. Chang,An edge-separating theorem on the second smallest normalized Laplacian eigenvalue of a graph and its applications,Discrete Applied Mathematics 171 (2014) 104–115 [15] Wei Li,An Chang,The minimal Laplacian spectral radius of trees with given matching number,Linear and Multilinear Algebra,Vol.62(2014),No.2, 218-228. [16] Jinshan Xie,A. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numerical Linear Algebra with Applications, 2013, 20:1030-1045 [17] Jinshan Xie,A. Chang, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra and its Applications,439,2013, 2195-2204 [18] Jinshan Xie,A. Chang, H-eigenvalues of signless Laplacian tensor for an even uniform hypergraph, Frontiers of Mathematics in China,Vol. 8 (2013) , No.1, 107-127 [19] B. Deng, A. Chang, Maximal Balaban index of Graphs, MATCH Commun. Math. Comput. Chem. Vol. 70 (2013) , No.1,259-286 [20] J. Li, W. C. Shiu, A. Chang: THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS,Czechoslovak Mathematical Journal,60(135) (2010), no. 3, 835–847. [21] J. Li, W. C. Shiu, A. Chang: On the kth Laplacian eigenvalues of trees with perfect matchings,Linear Algebra and its Applications,432 (2010) 1036–1041 [22] J. Li, W. C. Shiu, A. Chang: The number of spanning trees of a graph,Applied Mathematics Letters,23 (2010) 286-290 [23] An Chang, Wai Chee Shiu, On the kth Eigenvalues of Trees with Perfect Matchings,Discrete Mathematics and Theoretical Computer Science, Vol.9(1) (2007), 321-332. [24] Wenhuan Wang, An Chang, Dongqiang Lu, Unicyclic graphs possessing Kekule structures with minimal energy, J. of Mathematical Chemistry,Vol.42(2007), No.3, 311-320. [25] Wenhuan Wang, An Chang, Lianzhu Zhang, Dongqiang Lu, Unicyclic Hückel molecular graphs with minimal energy, J. of Mathematical Chemistry,39(2006),No.1, 231-241 . [26] Wei Li, An Chang, On the trees with maximum nullity, MATCH Commun. Math. Comput. Chem. 56(2006), 501-508. [27] Ailian Cnen, An Chang, Wai Chee Shiu, Energy ordering of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 55(2006), 95-102. [28] An Chang, Feng Tian, Aimei Yu, On the index of bicyclic graphs with perfect matchings, Discrete Mathematics,283(2004),51-59. [29] An Chang, On the largest eigenvalue of a tree with perfect matchings, Discrete Mathematics,269(2003),45-63. [31] An Chang, Qunxiang Huang, Ordering trees by their largest eigenvalues, Linear Algebra and its Applications, 370(2003),175-184. [32] An Chang, Feng Tian, On the spectral radius of uncyclic graphs with perfect matchings, Linear Algebra and its Applications, 370(2003),237-250. [33] Qunxiang Huang, An Chang, Circulant digraphs determined by their spectra, Discrete Mathematics, 240(1-3), (2001), 261-270. [34] Fuji Zhang, An Chang, Acyclic molecules with greatest HOMO-LUMO separation, Discrete Applied Mathematics, 98 (1999), 165-171. [35] An Chang, Bounds on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applications, 283(1-3 ), (1998), 247-255.

推荐链接
down
wechat
bug