近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[01] Wang X, He X, Wang M, et al. Neural Graph Collaborative Filtering[C].SIGIR 2019.
[02] Xin X, He X, Zhang Y, et al. Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation[C]. SIGIR 2019.
[03] Yang X, He X, Wang X, et al. Interpretable Fashion Matching with Rich Attributes[C]. SIGIR 2019.
[04] Wang X, He X, Cao Y, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]. KDD 2019
[05] Hu H, He X. Sets2Sets: Learning from Sequential Sets with Neural Networks[C].KDD 2019.
[06] Chen Y, Chen B, He X, et al. Lambda Opt: Learn to Regularize Recommender Models in Finer Levels[C]. KDD 2019.
[07] Ding D, Zhang M, Pan X, et al. Modeling Extreme Events in Time Series Prediction[C]. KDD 2019.
[08] Ding J, Quan Y, He X, et al.Reinforced Negative Sampling for Recommendation with Exposure Data[C]. IJCAI 2019.
[09] Xin X, Chen B, He X, et al. CFM: Convolutional Factorization Machines for Context-Aware Recommendation[C].IJCAI 2019
[10] Chen L, Liu Y, He X, et al. Matching User with Item Set: Collaborative Bundle Recommendation with Attention Network[C].IJCAI 2019.
[11] Feng F, Chen H, He X, et al.EnhancingStock Movement Prediction with Adversarial Training[C]. IJCAI 2019.
[12] Chen W, Gu Y, Ren Z, et al. Semi-supervised User Profiling with Heterogeneous Graph Attention Networks[C]. IJCAI 2019.
[13] Cao Y, Wang X, He X, et al. Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences[C]//WWW 2019: 151-161.
[14] Gao C, Chen X, Feng F, et al. Cross-domain Recommendation Without Sharing User-relevant Data[C]//WWW 2019: 491-502.
[15] Wang X, Wang D, Xu C, et al. Explainable Reasoning over Knowledge Graphsfor Recommendation[C]. AAAI 2019.
[16] Li X, Song J, Gao L, et al. Beyond RNNs: Positional Self-Attention with Co-Attention for Video Question Answering[C]. AAAI 2019.
[17] Yuan F, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//WSDM 2019: 582-590.
[18] Gao C, He X, Gan D, et al. Neural Multi-Task Recommendation from Multi-Behavior Data[C]//ICDE (Short).2019.
[19] Feng F, He X, Tang J, et al. Graph Adversarial Training: DynamicallyRegularizing Based on Graph Structure[J]. IEEE Transactions on Knowledge andData Engineering (TKDE, under submission).
[20] Gao M, He X, Chen L, et al. Learning Vertex Representations for Bipartite Networks[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE, undersubmission).
[21] Gao X, Feng F, He X, et al. Visually-aware Collaborative Food Recommendation[J]. IEEE Transactions on Multimedia (TMM, under submission).
[22] Hong R, Liu D, Mo X, et al. Learning to Compose and Reason with LanguageTree Structures for Visual Grounding[J]. IEEE transactions on pattern analysisand machine intelligence 2019.
[23] Feng F, He X, Wang X, et al. Temporal Relational Ranking for Stock Prediction[J].ACM Transactions on Information Systems (TOIS) 2019, 37(2): 27.
[24] Guan X, Cheng Z, He X, et al. Attentive Aspect Modeling for Review-aware Recommendation[J]. ACM Transactions on Information Systems (TOIS) 2019, 37(3):28.
[25] He X, Tang J, Du X, et al.Fast Matrix Factorization with Non-Uniform Weights on Missing Data[J]. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 2019
[26] Tang J, Du X, He X, et al. Adversarial training towards robust multimedia recommender system[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[27]Ding J, Yu G, He X, et al. SamplerDesign for Bayesian Personalized Ranking by Leveraging View Data[J]. IEEETransactions on Knowledge and Data Engineering (TKDE, Major Revision) 2019
[28] Liu Y, Li Z, Zhou C, et al. Generative adversarial active learning for unsupervised outlier detection[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[29] Xue F, He X, Wang X, et al. Deep Item-based Collaborative Filtering for Top-N Recommendation[J]. ACM Transactions on Information Systems (TOIS) 2019,37(3): 33.
[30] He X, He Z, Du X, et al. Adversarial personalized ranking for recommendation[C]// SIGIR 2018: 355-364.
[31] Gao M, Chen L, He X, et al. BiNE: Bipartite Network Embedding[C]//SIGIR 2018: 715-724.
[32] Cao D, He X, Miao L, et al. Attentive group recommendation[C]//SIGIR 2018: 645-654.
[33] Luo X, Nie L, He X, et al. Fast Scalable Supervised Hashing[C]//SIGIR 2018: 735-744.
[34] Song X, Wang X, Nie L, et al. A Personal Privacy Preserving Framework: ILet You Know Who Can See What[C]//SIGIR 2018: 295-304.
[35] Liu M, Wang X, Nie L, et al. Attentive moment retrieval in videos[C]// SIGIR 2018: 15-24.
[36] Liao L, Ma Y, He X, et al. Knowledge-aware Multimodal Dialogue Systems[C]//MM 2018:801-809.(Best Paper Final List)
[37] Gelli F, Uricchio T, He X, et al. Beyond the Product: Discovering Image Posts for Brands in Social Media[C]//MM 2018.
[38] Liao L, He X, Zhao B, et al. Interpretable multimodal retrieval for fashion products[C]//MM 2018
[39] Yu W, Zhang H, He X, et al. Aesthetic-based clothing recommendation[C]//WWW 2018 (Best Paper Award Honorable Mention)
[40] Wang X, He X, Feng F, et al. Tem: Tree-enhanced embedding model for explainable recommendation[C]//WWW 2018 : 1543-1552.
[41] Feng F, He X, Liu Y, et al. Learning on partial-order hypergraphs[C]//WWW 2018:1523-1532.
[42] Ding J, Feng F, He X, et al. An improved sampler for bayesian personalized ranking by leveraging view data[C]//WWW 2018 (Poster): 13-14.(Best Poster Award)
[43] Yuan F, Xin X, He X, et al. fBGD: Learning embeddings from positive unlabeled data with BGD[C]. UAI 2018.
[44] He X, Du X, Wang X, et al. Outer product-based neural collaborative filtering[C]. IJCAI 2018.
[45] Liu H, He X, Feng F, et al. Discrete factorization machines for fastfeature-based recommendation[C]. IJCAI 2018.
[46] Ding J, Yu G, He X, et al. Improving Implicit Recommender Systems with View Data[C]//IJCAI 2018: 3343-3349.
[47] Cheng Z, Ding Y, He X, et al. A^ 3NCF: An Adaptive Aspect Attention Modelfor Rating Prediction[C]//IJCAI 2018: 3748-3754.
[48] Shen T, Jia J, Shen G, et al. Cross-Domain Depression Detection via Harvesting Social Media[C]//IJCAI 2018: 1611-1617.
[49] Xin X, Yuan F, He X, et al. AllVec: Learning Word Representations Without Negative Sampling[C]. ACL 2018.
[50] Lei W, Jin X, Kan M Y, et al. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures[C]//ACL 2018: 1437-1447.
[51] Liao L, He X, Zhang H, et al. Attributed social network embedding[J].IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2257-2270.
[52] Zhang D, Guo L, He X, et al. A graph-theoretic fusion framework for unsupervised entity resolution[C]//2018 IEEE 34th International Conference onData Engineering (ICDE). IEEE, 2018: 713-724.
[53] He X, He Z, Song J, et al. NAIS: Neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2354-2366.
[54] Chen J, He X, Song X, et al. Venue prediction for social images by exploiting rich temporal patterns in lbsns[C]/MMM 2018 (Poster): 327-339.
[55] Gao Z, Wang D, He X, et al. Group-pair convolutional neural networks formulti-view based 3d object retrieval[C]//AAAI 2018.
[56] He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]/ SIGIR 2017: 355-364.
[57] Wang X, He X, Nie L, et al. Item silk road: Recommending items from information domains to social users[C]// SIGIR 2017: 185-194.
[58] Chen J, Zhang H, He X, et al.Attentive Collaborative Filtering: Multimedia Recommendation with Feature- and Item-levelAttention[C]. SIGIR 2017.
[59] Cao D, Nie L, He X, et al. Embedding factorization models for jointly recommending items and user generated lists[C]//SIGIR 2017: 585-594.
[60] Gelli F, He X, Chen T, et al. How personality affects our likes: Towardsa better understanding of actionable images[C]//MM 2017: 1828-1837.
[61] Nie L, Wang X, Zhang J, et al. Enhancing micro-video understanding byharnessing external sounds[C]//MM 2017: 1192-1200.
[62] Xu D, Zhao Z, Xiao J, et al. Video question answering via gradually refined attention over appearance and motion[C]//MM 2017: 1645-1653.
[63] Liu Z, Cheng L, Liu A, et al. Multiview and multimodal pervasive indoor localization[C]//MM 2017: 109-117.
[64] Zhu L, Huang Z, Liu X, et al. Discrete multi-modal hashing with canonicalviews for robust mobile landmark search[J]. IEEE Transactions on Multimedia(TMM) 2017, 19(9): 2066-2079.
[65] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learningthe weight of feature interactions via attention networks[C]. IJCAI 2017.
[66] Liao L, He X, Ren Z, et al. Representativeness-aware Aspect Analysis for Brand Monitoring in Social Media[C]//IJCAI. 2017: 310-316.
[67] Lei W, Wang X, Liu M, et al. SWIM: A Simple Word Interaction Model for Implicit Discourse Relation Recognition[C]//IJCAI. 2017: 4026-4032.
[68] He X, Liao L, Zhang H, et al. Neural collaborativefiltering[C]//WWW 2017:173-182.
[69] Bayer I, He X, Kanagal B, et al. A generic coordinate descent frame workfor learning from implicit feedback[C]//WWW 2017: 1341-1350.
[70] He X, Gao M, Kan M Y, et al. Birank: Towards ranking on bipartite graphs[J]. IEEE Transactions on Knowledge and Data Engineering,(TKDE) 2016, 29(1):57-71.
[71] Cao D, He X, Nie L, et al. Cross-platform app recommendation by jointly modeling ratings and texts[J]. ACM Transactions on Information Systems (TOIS) 2017, 35(4): 37.
[72] Cao D, Nie L, He X, et al. Version-sensitive mobile Apprecommendation[J]. Information Sciences, 2017, 381: 161-175.
[73] He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]//SIGIR 2016: 549-558.
[74] Zhang H, Shen F, Liu W, et al. Discrete collaborative filtering[C]//SIGIR 2016: 325-334.(Best Paper Award Honorable Mention)
[75] Chen T, He X, Kan M Y. Context-aware image tweet modelling and recommendation[C]//MM 2016: 1018-1027.
[76] Zhang J, Nie L, Wang X, et al. Shorter-is-better: Venue category estimation from micro-video[C]//MM 2016: 1415-1424.
[77] He X, Chen T, Kan M Y, et al. Trirank: Review-aware explainable recommendation by modeling aspects[C]//CIKM 2015:1661-1670.
[78] Chen T, SalahEldeen H M, He X, et al. VELDA: Relating an Image Tweet's Text and Images[C]//AAAI. 2015: 30-36.
[79] He X, Gao M, Kan M Y, et al. Predicting the popularity of web 2.0 itemsbased on user comments[C]//SIGIR 2014:233-242.
[80] He X, Kan M Y, Xie P, et al. Comment-based multi-view clustering of web2.0 items[C]//WWW 2014: 771-782.
[81] Jin Y, Kan M Y, Ng J P, et al. Mining scientific terms and their definitions: A study of the ACL anthology[C]//EMNLP 2013: 780-790.
[82] Gao M, He X, Jin C, et al. Recording how-provenance on probabilistic databases[C]//APWEB 2010:205-211.
[83] Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[84]Ren Z, He X, Yin D, et al. InformationDiscovery in E-commerce[C]. SIGIR 2018
[85] Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[86] He X, Zhang H, Chua T S. Recommendation Technologies for Multimedia Content[C]//ICMR. 2018: 8.