研究领域
电磁理论、微波毫米波器件、天线理论及设计、相控阵技术、超宽带吸波材料以及无线充电可运动机器人等。
科研项目:
先后承担和参与了30多项国家和部委项目等,近年部分项目如下:
1. 高技术项目,项目经费150万元,2019~2020;
2. 高技术项目,项目经费100万元,2018~2019;
3. 高技术项目,项目经费130万元,2018~2019;
4. 高技术项目,项目经费50万元,2017~2018;
5. 高技术项目,项目经费50万元,2017~2018;
6. 高技术项目,项目经费20万元,2017~2018;
7. HFSS仿真软件、应用与分析,中国科学院上海硅酸盐研究所,项目经费20万元,2017;
8. 高技术项目,项目经费35万元,2016~2017;
9. 吸波材料HFSS仿真软件、应用与分析,中国科学院上海硅酸盐研究所,项目经费20万元,2016~2017;
10. 集成有源及微纳集总参数的Metamaterial研究,国家自然科学基金委,项目经费70万元,2012~2016;
11. 基于矩形波导结构的10MW高功率移相器研究,中国工程物理研究院,项目经费30万元,2014~2016;
12. 高技术项目,项目经费46万元,2015~2016;
13. 光学透明微波隐身材料,中国科学院上海硅酸盐研究所,项目经费16万元,2014~2015;
14. 全空域全频段电磁探测的理论研究,教育部,项目经费20万元,2015;
15. 高技术项目,中国科学院,项目经费40万元,2014~2015;
16. 高技术项目,项目经费25万元,2014~2015;
17. Ku波段移相器研究,航天八院,项目经费18万元,2014;
18. L波段移相器研究,航天八院,项目经费12万元,2013~2014;
19. 高技术项目,项目经费40万元,2013~2014;
近年部分发明专利:
1. 一种基于无反射滤波器原理的吸波器件,申请日期:2019-07-23,申请号:201910667712.1;
2. 基于磁场聚焦技术的无线能量传输系统及方法,申请日期:2018-12-17,申请号:201811561874.9;
3. 具有多相位中心的自适应辐射单元及阵列天线设计,申请日期:2018-05-11,申请号:201810467520.1;
4. 非接触式光控高功率波导移相器,申请日期:2015-10-18,申请号:201510508872.3;
5. 国防发明专利,申请日期:2015-06-11,申请号:201518002712.2;
6. 国防发明专利,申请日期:2015-06-11,申请号:201518002711.8;
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Cun Wang, Yulong Xia, Guangjun Guo, Muhammad Nasir, and Qi Zhu, “Ellipsoidal Luneburg Lens Binary Array for Wide-angle Scanning[J],” IEEE Transactions on Antennas and Propagation, 2020 (Accepted).
2. Guangjun Guo, Yulong Xia, Cun Wang, Muhammad Nasir, and Qi Zhu, “Optimal Beam Shape of Feed of Luneburg Lens for High Gain Application[J],” IEEE Transactions on Antennas and Propagation, 2020 (Accepted).
3. Ru Meng, Yulong Xia, Letian Guo, Yuanyue Guo, and Qi Zhu, “X-band compact coaxial power combiner for high-power applications[J],” IET Microwaves Antennas & Propagation, 2019, 13(12): 2171-2176.
4. Ru Meng, Yulong Xia, Ying Li, and Qi Zhu, “The design of optically controlled phase shifter based on silicon photosensitivity[J],” Microwave and Optical Technology Letters, 2019, 61(3): 838-842.
5. Zixuan Yi, Meiling Li, Badar Muneer, and Qi Zhu, “High-efficiency mid-range inductive power transfer employing alternative-winding coils[J],” IEEE Transactions on Power Electronics, 2019, 34(7): 6706-6721.
6. Muhammad Nasir, Yulong Xia, Maomao Jiang, and Qi Zhu, “A novel integrated yagi-uda and dielectric rod antenna with low sidelobe level[J],” IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2751-2756.
7. Maomao Jiang, Liangmengcheng Zhu, and Qi Zhu, “A compact low-loss one-way transmission structure based on nonreciprocal coupling[J],” Applied Physics Letters, 2019, 114(1): 012408.
8. Ying Li, and Qi Zhu, “Broadband birefringent metamaterial lens with bi-functional high-gain radiation and deflection properties[J],” Optics Express, 2018, 26(13):16265-16276.
9. Meiling Li, Badar Muneer, Zixuan Yi, and Qi Zhu, “A Broadband Compatible Multispectral Metamaterial Absorber for Visible, Near-Infrared, and Microwave Bands[J],” Advanced Optical Materials 2018, 6(9): 1701238.
10. Guilin Sun, Badar Muneer, Ying Li, and Qi Zhu, “Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities[J],” IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(2): 281-291.
11. Ru Meng, Yulong Xia, Yuanyue Guo, and Qi Zhu, “An X-band 48-way Leaky Waveguide Antenna with High Aperture Efficiency and High Power Capacity[J],” IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6799-6809.
12. Ruixiang Deng, Meiling Li, Badar Muneer, Qi Zhu, et al., “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers[J],” Materials 2018, 11(1): 107.
13. Yulong Xia, Badar Muneer, and Qi Zhu, “Design of a full solid angle scanning cylindrical-and-conical phased array antennas[J],” IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4645-4655.
14. Ying Li, and Qi Zhu, “Luneburg lens with extended flat focal surface for electronic scan applications[J],” Optics express, 2016, 24(7): 7201-7211.
15. Meiling Li, Zixuan Yi, Yuehua Luo, Badar Muneer, and Qi Zhu, “A novel integrated switchable absorber and radiator[J],” IEEE Transactions on Antennas and Propagation, 2016, 64(3): 944-952.
16. Zhenxing Xia, Meiling Li, and Qi Zhu, “Realizing wideband negative inductor using current feedback amplifier[J],” Microwave and Optical Technology Letters, 2016, 58(7): 1723-1728.
17. Mingguang Tuo, Qi Zhu, et al., “Nonlinear microwave characterization of CVD grown graphene[J],” IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1557-1560.
18. Jiawei Li, Wenhua Huang, Qi Zhu, et al., “Influence of a falling edge on high power microwave pulse combination[J],” Physics of Plasmas, 2016, 23(7): 073104.
19. Jiawei Li, Wenhua Huang, Qi Zhu, et al., “Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator[J],” Applied Physics Letters, 2015, 106(11): 113505.
20. Si Li, Qi Zhu, et al., “Anisotropic Microwave Conductivity Dispersion of Horizontally Aligned Multi-Walled Carbon-Nanotube Thin Film on Flexible Substrate[J],” IEEE Transactions on Microwave Theory and Techniques, 2015, 63(11): 3588-3594.
21. Badar Muneer, Qi Zhu, and Shanjia Xu, “A broadband tunable multilayer substrate integrated waveguide phase shifter[J],” IEEE Microwave and Wireless Components Letters, 2015, 25(4): 220-222.
22. Badar Muneer, Qi Zhu, and Shanjia Xu, “A digital SIW phase shifter implemented by switching transverse slots via PIN diodes[J],” Frequenz, 2015, 69(9-10): 383-387.
23. Sensong AN, Badar Muneer, and Qi Zhu, “Generalized Analysis Method for a Class of Novel Wideband Loaded-Stub Phase Shifters[J],” Radioengineering, 2015, 24(4): 927.