个人简介
王小六,副教授、硕士生导师,现任数学学院副院长(分管教学)、应用数学系系主任。教授的课程包括,本科生课程:《解析几何》、《微分几何》、《微分流形》、《几何与代数》、《线性代数》等;研究生课程:《几何分析》。
工作经历
1.2014/05-至今, 东南大学,数学系,副教授;
2.2009/08-2014/04,东南大学,数学系,讲师;
3.2005/04-2006/07,东南大学,数学系,助教。
教育、研究经历
1.2016/12-2017/12, Rutgers University,数学系,访问学者;
2.2006/08-2009/07,香港中文大学,数学系,博士;
3.2002/09-2005/03,东南大学,数学系,硕士;
4.1998/09-2002/06,东南大学,数学系,本科。
在曲率流及相关抛物型方程问题方面,获得了一些较为有意义的结果。在国内外核心期刊上发表论文多篇,文章所在期刊包括《Calc. Var. PDE》,《Math. Z.》,《SIAM J. Math. Anal.》等。作为负责人主持完成了1项国家青年项目,正在主持一项国家面上项目。
2018 Spring Seminars: Please click 讨论班2018春季.docx
2018 Fall Seminars: Please click 讨论班2018年秋季.doc
承担项目
1. 主持国家自然科学基金面上项目1项:相变模型中界面运动方程的定性研究,2019年1月—2022年12月,立项;
2. 主持国家自然科学基金青年科学基金项目1项:平面曲率流大时间性态的研究,2012年1月—2014年12月,已结题;
3. 主持中国博士后特别资助基金项目1项:非局部曲率流奇性与整体渐近性的研究,2016年9月—2018年8月,在研;
4. 主持东南大学优秀青年教师资助计划1项,2015年1月—2017年12月,在研;
5.参与国家自然科学基金青年基金项目1项:波和Schr\“{O}dinger方程的随机化初值问题,2011年1月— 2013年12月,已结题;
6 .参与国家自然科学基金面上项目1项:具奇性边界条件的非线性椭圆及发展方程(组)解的研究,2012年1月—2015年12月,在研;
7.参与江苏省自然科学基金面上项目1项:具奇性项的非线性偏微分方程(组)解的结构与性质,2011年10月—2014年10月,已结题;
荣誉奖项
2011年获东大教育基金会71871奖教金二等奖
2013年获东大青年教师授课竞赛三等奖
2013年获江苏省第三届数学基础课青年教师授课竞赛三等奖
2014年获东大教学奖励金二等奖。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
I.The curvature flows with constraint, or nonlocal flows
(0) A note on the singularity in the evolution of nonlocal constraint flows (by Wang Xiaoliu,2019)a note on singularity.pdf
(1) Sesum Natasa*, Tsai Dong-Ho, Wang Xiao-Liu, Evolution of Locally Convex Closed Curves in Nonlocal Curvature Flows. Submitted, 2017.
(2)Wang Xiaoliu *, Wo Weifeng, Yang Ming, Evolution of non-simple closed curves in the area-preserving curvature flow, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 659-668.
(3) Tsai Dong-Ho*, Wang Xiaoliu*, The evolution of nonlocal curvature flow arising in a Hele-Shaw problem.SIAM J. Math. Anal., 50 (2018),no. 1, 1396-1431.
(4)Wang Xiaoliu*, Li Huiling, Chao Xiaoli, Length-preserving evolution of immersed closed curves and the isoperimetric inequality, Pacific J. Math., 290(2017),no. 2, 467-479.
(5) Tsai Dongho*, Wang Xiaoliu, On length-preserving and area-preserving nonlocal flow of convex closed plane curves, Calc. Var. Partial Differential Equations, 54 (2015) 3603-3622.
(6)Wang Xiaoliu, Wo Weifeng*, Length-preserving evolution of non-simple symmetric plane curves, Math. Methods Appl. Sci., 37 (2014) 808-816.
(7)Wang Xiaoliu *, Kong Linghua, Area-preserving evolution of non-simple symmetric plane curves, J. Evol. Equ., 14 (2014) 387-401.
(8)Chao Xiaoli, Ling Xiaoran, Wang Xiaoliu *, On a planar area-preserving curvature flow, Proc. Amer. Math. Soc., 141 (2013) 1783-1789.
II.The shrinking curvature flows
(1)Wo Weifeng, Wang Xiaoliu, Qu Changzheng*, The centro-affine invariant geometric heat flow, Math. Z.,288 (2018), no. 1-2, 311-331.
(2)Chen Wenyan, Wang Xiaoliu *, Yang Ming, Evolution of highly symmetric curves under the shrinking curvature flow, Math. Meth. Appl. Sci. 40(2017) 3775-3783.
(3)Wo Weifeng*, Yang Shuxin, Wang Xiaoliu, Group invariant solutions to a centro-affine invariant flow, Arch. Math. (Basel), online publication, 2017, DOI:10.1007/s00013-016-1010-3.
(4)Chou Kaiseng, Wang Xiaoliu *, A note on Abresch-Langer conjecture, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014) 299-304.
(5)Chou Kaiseng, Wang Xiaoliu *, The curve shortening problem under robin boundary condition, NoDEA Nonlinear Differential Equations Appl., 19 (2012) 177-194.
(6)Wang Xiaoliu, Wo Weifeng*, On the asymptotic stability of stationary lines in the curve shortening problem, Pure Appl. Math. Q., 9 (2013) 493-506.
(7)Wang Xiaoliu *, Wo Weifeng, On the stability of stationary line and grim reaper in planar curvature flow, Bull. Aust. Math. Soc., 83 (2011) 177-188.
(8)Wang Xiaoliu *, The stability of m-fold circles in the curve shortening problem, Manuscripta Math.,134 (2011) 493-511.
III Other curvature flows
(1) Lin Yuchu, Tsai Dongho*, Wang Xiaoliu, On some simple examples of non-parabolic curve flows in the plane, J. Evol. Equ., 15 (2015) 817–845.
IV Nonlinear Parabolic PDEs
(1)Li Huiling, Wang Hengling, Wang Xiaoliu*, A quasilinear parabolic problem with a source term and a nonlocal absorption, Communications on Pure and Applied Analysis, 17 (2018), no. 5, 1945-1956.
(2)Wang Hengling, Tao Weirun, Wang Xiaoliu*, Finite-time blow-up and global convergence of solutions to a nonlocal parabolic equation with conserved spatial integral, Nonlinear Analysis Real World Applications, 40 (2018) 55-63.
(3)Wang Xiaoliu*, Tian Fangzheng, Li Gen, Nonlocal parabolic equation with conserved spatial integral, Arch. Math. (Basel) , 105 (2015) 93–100.
(4)Kong Linghua,Wang Xiaoliu, Xueda Zhao*, Asymptotic analysis to a parabolic system with weighted localized sources and inner absorptions, Arch. Math. (Basel), 99 (2012) 375-386.
(5)Liu Zhe,Wang Xiaoliu*, On a parabolic equation in MEMS with fringing field, Arch. Math. (Basel), 98 (2012) 373-381.
(6)Wang Xiaoliu*, Wo Weifeng, Long time behavior of solutions for a scalar nonlocal reaction-diffusion equation, Arch. Math. (Basel), 96 (2011) 483-490.
(7)Wang Mingxin*,Wang Xiaoliu, A reaction-diffusion system with nonlinear absorption terms and boundary flux, Acta Math. Appl. Sin. Engl. Ser., 24 (2008) 409-422.
V Geometry on surfaces
(1) Wang, Xiaoliu; Chao, Xiaoli*, Constant angle surfaces constructed on curves. J. Southeast Univ. (English Ed.) 29 (2013) 470–472.
学术兼职
学术任职为美国数学会《Mathematical Reviews》评论员