当前位置: X-MOL首页全球导师 国内导师 › 方方

个人简介

方方,华东师范大学统计学院教授,博士生导师。入选上海市东方英才计划拔尖项目。曾任统计与数据科学前沿理论及应用教育部重点实验室副主任。本科和博士先后毕业于北京大学数学系和美国威斯康星大学统计系。在2013年加入华东师范大学之前,曾在通用电气金融集团和上海浦东发展银行任职多年。主要研究方向为缺失数据、模型平均、碎片化数据分析、KS学习。在包括 AOS/JOE/Biometrika/JBES 在内的国际一流统计学和计量经济学期刊上发表论文30余篇。先后主持和参与国家和省部级项目13项。目前主持国家自然科学基金重点项目“大数据背景下不完全数据的统计分析方法、理论和应用”。授权专利6项。曾获上海市自然科学二等奖。全国工业统计学教学研究会常务理事、数字经济与区块链技术分会副理事长,IMS China委员会委员,SCI期刊 Journal of Nonparametric Statistics 副主编。在应用领域长期关注信用评分和民航QAR大数据分析。出版统计科普小说《统计王国奇遇记》。 工作经历 2007年8月-2009年12月,通用电气金融集团,高级分析师 2010年1月-2013年7月,上海浦东发展银行,战略发展部,战略分析师 2013年8月-2019年12月,华东师范大学,统计学院,副教授 2020年1月至今,华东师范大学,统计学院,教授 教育经历 1998年9月-2002年7月,北京大学,数学系,本科 2002年8月-2007年7月,University of Wisconsin - Madison,统计系,博士 荣誉及奖励 上海市东方英才计划拔尖项目,2023年度 “几类复杂数据的统计分析方法研究”,上海市自然科学二等奖,2019年度,第三完成人

研究领域

missing data, model averaging, fragmentary data analysis, KS learning

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

在审和在改的 Integrated generalizd moment method with adaptive moment selection from external heterogeneous populations. Kolmogorov-Smirnov learning by neuron networks with a nonconvex surrogate loss. 会议论文 Fang, Fang,Zhang, Riquan, and Zhao, Xinbin*. An aggregated evaluation and multi-dimensional comparison method of flight safety based on QAR data. IEEE - ICCASIT 2020. 期刊论文 Zhong, Yan*#, Liu, Tong#, Fang, Fang#, Ge, Jia, Xu, Bohao, Zhao, Xinbin. Hard landing pattern recognition and precaution with QAR data by functional data analysis. IEEE Transactions on Aerospace and Electronic Systems, 2024, Accepted. Lin, Xiefang and Fang, Fang*. Variable selection of Kolmogorov-Smirnov maximization with a penalized surrogate loss. Computational Statistics & Data Analysis, 2024, 195, Article 107944. Fang, Fang* and Bao, Shenliao. FragmGAN: Generative adversarial nets for fragmentary data imputation and prediction. Statistical Theory and Related Fields, 2024, 8(1), 15-28. An invited paper for special issue of causal inference, missing data and data integration. Yuan, Chaoxia, Fang, Fang*, and Li, Jialiang. Model averaging for generalized linear models in diverging model spaces with effective model size. Econometric Reviews, 2024, 43(1), 71-96. Fang, Fang*, Yuan, Chaoxia, and Tian, Wenling. An asymptotic theory for least squares model averaging with nested models. Econometric Theory, 2023, 39(2), 412-441. Yuan, Chaoxia*, Wu, Yang, and Fang Fang. Model averaging for generalized linear models in fragmentary data prediction. Statistical Theory and Related Fields, 2022, 6(4), 344-352. Fang Fang* , Yang, Qiwei, and Tian, Wenling. Cross-validation for selecting the penalty factor in least squares model averaging. Economics Letters, 2022, 217, Article 110683. Fang, Fang*, Li, Jialiang, and Xia, Xiaochao. Semiparametric model averaging prediction for dichotomous response. Journal of Econometrics, 2022, 229, 219-245. Yuan, Chaoxia, Fang, Fang, and Lyu Ni*. Mallows model averaging with effective model size in fragmentary data prediction. Computational Statistics & Data Analysis, 2022, 173, Article 107497. Fang, Fang, Zhao, jiwei, Ahmed, Ejaz, and Qu Annie*. A weak-signal-assisted procedure for variable selection and statistical inference with an informative subsample. Biometrics, 2021, 77, 996-1010. Chen, Ji, Shao, Jun, and Fang, Fang*. Instrument search in pseudo likelihood approach for nonignorable nonresponse. Annals of the Insititute of Statistical Mathematics, 2021, 73, 519-533. Wang, Lei, Shao, Jun, and Fang, Fang*. Propensity model selection with nonignorable nonresponse and instrument variable. Statistica Sinica, 2021, 31, 647-672. Fang, Fang* and Liu, Minhan. Limit of the optimal weight in least squares model averaging with non-nested models. Economics Letters, 2020, 196, 109586. Fang, Fang and Yu, Zhou*. Model averaging assisted sufficient dimension reduction. Computational Statistics & Data Analysis, 2020, 152, Article 106993. Ni, Lyu, Fang, Fang*, and Shao, Jun. Feature screening for ultrahigh dimensional categorical data with covariates missing at random. Computational Statistics & Data Analysis, 2020, 142, Article 106824. Fang, Fang*, Lan, Wei, Tong, Jingjing, and Shao, Jun. Model averaging for prediction with fragmentary data. Journal of Business & Economic Statistics. 2019, 37, 517-527 Fang, Fang, Li, Jialiang* and Wang, Jingli. Optimal model averaging estimation for correlation structure in generalized estimating equations. Communications in Statistics - Simulation and Computation. 2019, 48, 1574-1593. Chen, Ji and Fang, Fang*. Semiparametric likelihood for estimating equations with nonignorable nonresponse by nonresponse instrument. Journal of Nonparametric Statistics. 2019, 31, 420-434. Fang, Fang* and Chen, Yuanyuan. A new approach for credit scoring by directly maximizing the Kolmogorov-Smirnov statistic. Computational Statistics & Data Analysis. 2019, 133, 180-194. Fang, Fang*, Yin, Xiangju, and Zhang, Qiang. Divide and conquer algorithms for model averaging with massive data. Journal of System Science and Mathematical Sciences, Chinese Series. 2018, 38, 764-776. An invited paper for the special issue of model averaging. Fang, Fang*, and Ni, Lyu. Variable screening with missing covariates: A discussion of Statistical inference for nonignorable missing data problems: A selective review by Niansheng Tang and Yuanyuan Ju. Statistical Theory and Related Fields, 2018, 2, 134-136. Fang, Fang, Zhao, Jiwei, and Shao, Jun*. Imputation-based adjusted score equations in generalized linear models with nonignorable missing covariate values. Statistica Sinica, 2018, 28, 1677-1701. Chen, Ji, Fang, Fang and Xiao, Zhiguo*, Semiparametric inference for estimating equations with nonignorable missing covaraites. Journal of Nonparametric Statistics, 2018, 30, 796-812. Ni, Lyu, Fang, Fang*, and Wan, Fangjiao. Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data. Metrika, 2017, 80, 805-828. Fang, Fang, and Shao, Jun*. Model selection with nonignorable nonresponse. Biometrika, 2016, 103, 861-874. Fang, Fang*, Fan, Xiaoyin, and Zhang Ying. Estimation of response from longitudinal binary data with noignorable missing values in migraine trails. Contemporary Clinical Trials Communications, 2016, 4, 90-98. Fang, Fang, and Shao, Jun*. Iterated imputation estimation for generalized linear models with missing response and covariate values. Computational Statistics & Data Analysis, 2016, 103, 111-123. Ni, Lyu, and Fang, Fang*. Entropy based model free feature screening for ultrahigh dimenisonal multiclass classification. Journal of Nonparametric Statistics, 2016, 28, 515-530. Fang, Fang*. Regression analysis with nonignorably missing covariates using surrogate data. Statistics and Its Interface, 2016, 9, 123-130. Fang, Fang, Hong, Quan, and Shao, Jun*. Empirical likelihood estimation for samples with nonignorable nonresponse. Statistica Sinica, 2010, 20, 263-280. Fang, Fang, Hong, Quan, and Shao, Jun*. A pseudo empirical likelihood approach for stratified samples with nonresponse. The Annals of Statistics, 2009, 37, 371-393 . 方方,资本项目开放与银行业务发展机遇探析,上海金融, 2013, No. 1, 98-101. 李麟、蒋波、方方,商业银行综合经营的边界、收益和风险,金融理论与实践, 2012, 396(7), 13-18. 李麟、方方、李晓玮,利率市场化下的区域商业银行转型,中国金融, 2012, No. 19, 70-72. 方方,“大数据”趋势下商业银行应对策略研究,新金融,2012, 286(12), 25-28. 其它文章 Fang, Fang and Lou, Zhilan. A Conversation with Jun Shao. ICSA Bulletin, 2015, 27, 69-77.

学术兼职

IMS China委员会 委员 2023.07-2025.06 全国工业统计学教学研究会 常务理事 2022-2026 中国现场统计研究会机器学习分会 常务理事 2021-2025 全国工业统计学教学研究会数字经济与区块链技术分会 副理事长 2020-2024 中国优选法统筹法与经济数学研究会数据科学分会 监事 2019-2023 全国工业统计学教学研究会中国青年统计学家协会 理事 2019-2023 中国现场统计研究会经济与金融统计分会 理事 2017-2021 中国现场统计研究会高维数据统计分会 理事 2015-2019 Journal of Nonparametric Statistics Associate Editor 2016-2018,2019-2021,2022-2024

推荐链接
down
wechat
bug