近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
T. Wang, F. Fang, H. Zheng, and G. Zhang, “FrMLNet: Framelet-Based Multilevel Network for Pansharpening”, IEEE Transactions on Cybernetics, 2022.
Q. Yi, J. Li, F. Fang, A. Jiang, G. Zhang, “Efficient and Accurate Multi-scale Topological Network for Single Image Dehazing”, IEEE Transactions on Multimedia (TMM), 2022.
Y. Liu, F. Fang, T. Wang, J. Li , Y. Sheng, and G. Zhang, “Multi-Scale Grid Network for Image Deblurring With High-Frequency Guidance”, IEEE Transactions on Multimedia (TMM), 2022.
Y. Ru, F. Li, F. Fang, G. Zhang, “Patch-based weighted SCAD prior for compressive sensing”, Information Sciences, vol. 592, pp. 137-155, 2022.
P. Lu, F. Fang, H. Zhang, L. Ling and K. Hua. “AugMS-Net: Augmented multiscale network for small cervical tumor segmentation from MRI volumes”, Computers in Biology and Medicine, vol. 141, 104774, 2022.
Q. Yi, J. Li, Q. Dai, F. Fang, G. Zhang, and T. Zeng, “Structure-Preserving Deraining with Residue Channel Prior Guidance” IEEE International Conference on Computer Vision (ICCV), pp. 4238-4247, 2021.
Q. Dai, J. Li, Q. Yi, F. Fang, G. Zhang, “Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation”, 29th ACM International Conference on Multimedia, pp. 1985-1993, 2021.
Q. Dai, F. Fang, J. Li, G. Zhang and A. Zhou, “Edge-guided Composition Network for Image Stitching”, Pattern Recognition, vol. 118, 108019, 2021.
L. Chen, J. Zhang, S. Lin, F. Fang, J. Ren, “Blind Deblurring for Saturated Images”, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6308-6316, 2021.
L. Chen, J. Zhang, J. Pan, S. Lin, F. Fang, J. Ren, “Learning a Non-blind Deblurring Network for Night Blurry Images”, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10542-10550 , 2021.
F. Fang, J. Li, Y. Yuan, T. Zeng and G. Zhang, “Multilevel Edge Features Guided Network for Image Denoising”, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 32, no. 9, pp. 3956-3970, 2021.
Y. Yuan, F. Fang, and G. Zhang, “Superpixel-based Seamless Image Stitching for UAV Images”, IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 59, no. 2, pp. 1565-1576, 2021.
J. Li, J. Li, F. Fang, F. Li and G. Zhang, “Luminance-aware Pyramid Network for Low-light Image Enhancement”, IEEE Transactions on Multimedia (TMM), vol. 23, pp. 3153-3165,2021.
J. Li, F. Fang, J. Li, K. Mei and G. Zhang, “MDCN: Multi-scale Dense Cross Network for Image Super-Resolution”, IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 31, no. 7, pp. 2547-2561, 2020.
F. Fang, J. Li, T. Zeng, “Soft-Edge Assisted Network for Single Image Super-Resolution”, IEEE Transactions on Image Processing (TIP), vol. 29, pp. 4656-4668, 2020.
F. Fang, T. Wang, T. Zeng and G. Zhang, “A Superpixel-Based Variational Model for Image Colorization”, IEEE Transactions on Visualization and Computer Graphics (TVCG), vol. 26, no. 10, pp. 2931-2943, 2020.
Z. Xu, T. Wang, F. Fang, Y. Shen, G. Zhang. “Stylization-Based Architecture for Fast Deep Exemplar Colorization”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9363-9372, 2020.
F. Fang, T. Wang, S. Wu, and G. Zhang, “Removing moire patterns from single images”, Information Sciences, vol. 514, pp. 56–70, 2020.
F. Fang, T. Wang, Y. Wang, T. Zeng, and G. Zhang, “Variational single image dehazing for enhanced visualization”, IEEE Transactions on Multimedia (TMM),vol. 22, no. 10, pp. 2537-2550, 2020.
Z. Gu, F. Li, F. Fang, and G. Zhang, “A novel retinex-based fractional-order variational model for images with severely low light”, IEEE Transactions on Image Processing (TIP), vol. 29, pp. 3239-3253, 2020.
L. Chen, F. Fang, J. Liu, G. Zhang, “OID: Outlier Identifying and Discarding in Blind Image Deblurring”, The European Conference on Computer Vision (ECCV), pp. 598-613, 2020.
L. Chen, F. Fang, S. Lei, F. Li, and G. Zhang, “Enhanced Sparse Model for Blind Deblurring”, The European Conference on Computer Vision (ECCV), pp. 631–646, 2020.
H. Zhen, F. Fang, and G. Zhang, “Cascaded dilated dense network with two-step data consistency for MRI reconstruction”, 33rd Conference on Neural Information Processing Systems (NeurIPS2019), 2019.
L. Chen, F. Fang, T. Wang, and G. Zhang, “Blind image deblurring with local maximum gradient prior”, IEEE Conference on Computer Vision and Pattern Recognition 2019 (CVPR 2019), pp. 1742-1750, 2019.
T. Wang, F. Fang, F. Li, and G. Zhang, “High-quality bayesian pansharpening”, IEEE Transactions on Image Processing (TIP), vol. 28, no. 1, pp. 227-239, 2019.
H. Chen, F. Fang, “Bregman-tanimoto based method for contrast preserving decolorization”, 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1240-1245, 2019.
F. Fang, T. Wang, Y. Fang, G. Zhang, “Fast Color Blending for Seamless Image Stitching”, IEEE Geoscience and Remote Sensing Letters, vol.16, no.7, pp. 1115-1119, 2019.
J. Liu, F. Fang, N. Du, “Color-to-gray Conversion with Perceptual Preservation and Dark Channel Prior”, International Journal of Numerical Analysis and Modeling, vol.16, no.4, pp.668-679, 2019.
J. Li, F. Fang, K. Mei, and G. Zhang, “Multi-scale residual network for image super-resolution”, in The European Conference on Computer Vision (ECCV), pp. 517-532, 2018.
F. Fang, F. Li, T. Zeng, “Reducing spatially varying out-of-focus blur from natural image”, Inverse Problems and Imaging, vol.11, no.1, pp.65-85, 2017.
G. Zhang, Y. Xu, F. Fang, “Framelet-based sparse unmixing of Hyperspectral Images”, IEEE Transactions on Image Processing (TIP), Vol. 25, no.4, pp. 1516-1529, 2016.
F. Li, F. Fang, G. Zhang, “Unsupervised change detection in SAR images using curvelet and L1-norm based soft segmentation”, International Journal of Remote Sensing, vol.37, no. 14, pp. 3232-3254, 2016.
Y. Xu, F. Fang, G. Zhang, “Similarity-Guided and -Regularized Sparse Unmixing of Hyperspectral Data”, IEEE Geoscience and Remote Sensing Letters, vol.12, no.11, pp.2311-2315, 2015.
G. Zhang, F. Fang, A. Zhou, F. Li, “Pan-sharpening of multi-spectral images using a new variational model”, International Journal of Remote Sensing, vol.36, no.5, pp. 1484-1508, 2015.
C. Li, A. Zhou, G. Zhang, F. Fang, “An Antinoise Method for Hyperspectral Unmixing”, IEEE Geoscience and Remote Sensing Letters, vol.12, no.3, pp. 636-640, 2015.
F. Fang, F. Li, T. Zeng, “Single image dehazing and denoising: a fast variational approach”, SIAM Journal on Imaging Sciences, vol.7, no.2, pp. 969-996, 2014.
F. Fang, G. Zhang, F. Li, C. Shen,“Framelet based pan-sharpening via a variational method”, Neurocomputing, vol. 129, no.1, pp.362-377, 2014.
C. Li, F. Fang, A. Zhou, G. Zhang, “A Novel Blind Spectral Unmixing Method Based on Error Analysis of Linear Mixture Model”, IEEE Geoscience and Remote Sensing Letters, vol.11, no. 7, pp.1180-1184, 2014.
F. Fang, F. Li, C. Shen, G. Zhang; “A variational approach for pan-sharpening”, IEEE Transactions on Image Processing, vol.22, no.7, pp. 2822-2834, 2013.
F. Fang, F. Li, G. Zhang, C. Shen, “A variational method for multisource remote-sensing image fusion”, International Journal of Remote Sensing, vol.34, no.7, pp. 2470-2486, 2013.
H. Liu, F. Yan, J. Zhu, F. Fang, “Adaptive vectorial total variation models for multi-channel synthetic aperture radar images despeckling with fast algorithms”, IET Image Processing, vol. 7, no. 9, pp. 795-804, 2013.
H. Liu, J. Liu, F. Yan, J. Zhu, F. Fang, “Spatially adapted total variational model for synthetic aperture radar image despeckling”, Journal of Electronic Imaging, vol, 22, no. 3, 033019, 2013.