当前位置: X-MOL首页全球导师 国内导师 › 孙立

个人简介

孙立,男,1989年08月生,江苏扬州人,博士,副研究员,动力工程及自动化系 硕导 任教师岗(教学科研)。 教育经历 2008.09—2012.06:东南大学吴健雄学院、能源与环境学院,热能工程,本科; 2012.09—今:清华大学热能工程系,热工控制,直博; 2014.09—2015.09; 美国Baylor University,联合培养; 2017.01—今:东南大学能源与环境学院,讲师,加入沈炯教授团队。 2019.03-2020.08: 美国康奈尔大学,Visiting Associate Professor. (团队: https://peese.org/) 主要从事能源动力过程机器学习及先进控制研究。已在IEEE Transactions on Industrial Electronics,Applied Energy, I&EC Research,ISA Transactions及国际自控联IFAC会刊等国际著名杂志发表第一/通信作者SCI论文25篇,国内重要期刊论文3篇。指导本科生发表第一作者SCI论文4篇,申请发明专利11项。相关研究结果已应用于南方电网多个火电机组,获得用户的广泛好评。 教学课程 本科生课程:《热工过程自动控制》 科研 教改项目 均为第一负责人 1)国家自然科学基金项目,51806034 基于数据驱动的热工过程不确定性补偿控制研究,2019.01-2021.12 2)江苏省自然科学基金项目,BK20170686,2017.09-2020.09 3) 企业委托项目(上海明华电力、青岛动力等)若干。 指导本科生、研究生发表SCI论文七篇。 专利申请 [1]李冠儒,孙立,金宇晖.锂离子电池荷电状态及内阻的联合预测方法[P]:中国,CN109991549A.2019-07-09. [2]沈炯,张怡,孙立,薛文超. 一种基于扩张状态卡尔曼滤波器的模型预测控制算法[P]:中国, CN110376886A. 2019-10-25. [3]沈炯,符灏,孙立. 一种质子交换膜燃料电池阴极侧含水量的软测量方法[P]:中国, CN109827866A. 2019-05-31. [4]秦宇枭,孙立. 一种燃料电池电压的模糊自适应PID控制方法[P]:中国, CN109240078A. 2019-01-18. [5]杨欣霈,吴冰钰,孙立. 基于直流微电网逆变器的能源路由器及其负荷分配控制方法[P]:中国, CN109787214A. 2019-05-21. [6]秦宇枭,孙立,金宇晖. 一种基于果蝇算法的制冷系统温度优化控制方法[P]:中国, CN109974360A. 2019-07-05. [7]金宇晖,李冠儒,孙立. 一种模型嵌入式的新型自抗扰控制器[P]:中国, CN109507872A. 2019-03-22. [8]金宇晖,李冠儒,孙立. 一种基于数据驱动自抗扰控制的燃料电池温度控制方法[P]:中国, CN109742425A. 2019-05-10. [9]王玉婷,孙立,董浩洋. 一种平抑间歇能源短期波动的热泵储能系统[P]:中国, CN109764436A. 2019-05-17. [10]秦可欣,孙立,金宇晖. 一种燃料电池与绿色建筑相耦合的分布式能源节能系统[P]:中国, CN109599900A. 2019-04-09. [11]刘东川,孙立,陈祎璠,赵聪凡,马德宏. 一种热工过程中对象的PID控制器参数控制方法[P]:中国, CN110262221A. 2019-09-20. [12]张怡,沈炯,孙立. 一种基于迭代反馈整定的UDE控制系统设计方法[P]:中国, CN108132599A. 2018-06-08. 荣誉 奖励 获得奖励和荣誉: (1)江苏省双创博士,2018年,江苏省委组织部。 (2)江苏省青年科技人才托举工程,2017,江苏省科学技术协会。 (3)清华大学优秀博士学位论文:《基于不确定性补偿的火电机组二自由度控制》,学科:动力工程及工程热物理,2017年。 入选 华英学者,东南大学“至善青年学者” 指导学生 研究生: 李冠儒 孙雯 董豪 李实 本科生: 金宇晖 秦宇枭 杨欣霈 王彤 招生要求 1 较好的数学基础和编程能力(MATALB/Modelica/Python等) 或 较强的实验动手能力(应用研究) 2 勤奋刻苦,勇于探索的敬业态度 (如仅想轻松获得学位,本团队可能并不合适) 3 积极向上的精神面貌和合作意识

研究领域

机器学习与智能控制; 热工过程动态特性及先进控制; 燃料电池系统建模与优化控制; 综合能源系统管理与优化。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Sun L, Li G, You F. Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer[J].Renewable and Sustainable Energy Reviews, 2020, 131: 109994.(影响因子,12.11,中科院一区) [2]Xue W*, Zhang X, Sun L*, et al. Extended state filter based disturbance and uncertainty mitigation for nonlinear uncertain systems with application to fuel cell temperature control[J]. IEEE Transactions on Industrial Electronics, 2020. [3]Zhang Y, Hua Q S, Sun L*, et al. Life Cycle Optimization of Renewable Energy Systems Configuration with Hybrid Battery/Hydrogen Storage: A Comparative Study[J]. Journal of Energy Storage, 2020, 30: 101470. (影响因子,3.7,中科院二区) [4]Sun L, Sun W, You F. Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias[J]. Applied Energy, 2020, 271: 115243. (影响因子,8.84,中科院一区) [5]Wang Y, Hua Q S, Sun L*, et al. Thermodynamic efficiency comparison between thermal and electric storage for photovoltaic-driven chilling system[J]. Journal of Energy Storage, 2020, 28: 101253. (影响因子,3.7,中科院二区) [6]Sun L, Jin Y, You F. Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell[J]. Applied Energy, 2020, 261: 114381. (影响因子,8.84,中科院一区) [7]Sun W, Qiu Y, Sun L*, et al. Neural network‐based learning and estimation of battery state‐of‐charge: A comparison study between direct and indirect methodology[J]. International Journal of Energy Research, 2020. (影响因子,3.7,中科院二区) [8]Sun L, Li G, Hua Q S, et al. A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control[J]. Renewable Energy, 2020, 147: 1642-1652. [9]Sun L, Jin Y, Pan L, et al. Efficiency analysis and control of a grid-connected pem fuel cell in distributed generation[J]. Energy Conversion and Management, 2019, 195: 587-596. [10]Sun L, Zhang Y, Li D, et al. Tuning of Active Disturbance Rejection Control with application to power plant furnace regulation[J]. Control Engineering Practice, 2019, 92: 104122. [11]Sun L, Li G, Hua Q S, et al. A Hybrid Paradigm Combining Model-Based and Data-Driven Methods for Proton Exchange Membrane Fuel Cell Stack Cooling Control[J]. Renewable Energy, 2019. https://doi.org/10.1016/j.renene.2019.09.048 [12]Sun L, Shen J, Hua Q, et al. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 866-875. [13]Sun L, Wu G, Xue Y, et al. Coordinated Control Strategies for Fuel Cell Power Plant in a Microgrid[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 1-9. [14]Sun L, Hua Q, Shen J, et al. Multi-objective optimization for advanced superheater steam temperature control in a 300 MW power plant[J]. Applied Energy, 2017, 208. [15]Sun L, Hua Q, Shen J, et al. A combined voltage control strategy for fuel cell[J]. Sustainability, 2017, 9(9): 1517. [16]Sun L, Hua Q, Li D, et al. Direct energy balance based active disturbance rejection control for coal-fired power plant[J]. ISA Transactions, 2017, 70: 486-493. [17]Sun L, Li D, Zhong Q C, et al. Control of a class of industrial processes with time delay based on a modified uncertainty and disturbance estimator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7018-7028. [18]Sun L, Li D, Hu K, et al. On tuning and practical implementation of active disturbance rejection controller: a case study from a regenerative heater in a 1000 MW power plant[J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6686-6695. [19]Sun L, Dong J, Li D, et al. A practical multivariable control approach based on inverted decoupling and decentralized active disturbance rejection control[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2008-2019. [20]Sun L, Li D, Lee K Y, et al. Control-oriented modeling and analysis of direct energy balance in coal-fired boiler-turbine unit[J]. Control Engineering Practice, 2016, 55: 38-55. [21]Sun L, Li D, Gao Z, et al. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system[J]. ISA transactions, 2016, 64: 24-33. [22]Sun L, Li D, Lee K Y. Optimal disturbance rejection for PI controller with constraints on relative delay margin[J]. ISA transactions, 2016, 63: 103-111. [23]Sun L, Li D, Lee K Y. Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer[J]. Control Engineering Practice, 2015, 42: 128-139. [24]孙立, 董君伊, 李东海, 等. 基于扩张状态观测器的汽轮机功频电液串级控制. 中国电机工程学报, 2015, 35(7): 1697-1703. [25]孙立, 董君伊, 李东海. 基于果蝇算法的过热汽温自抗扰优化控制. 清华大学学报: 自然科学版, 2014 (10): 1288-1292. [26]孙立, 潘蕾, 沈炯. 基于 LSSVM-GPC 的流化床锅炉多变量协调控制方法. 东南大学学报: 自然科学版, 2013, 43(2): 312-316.

学术兼职

(4)国际自动控制联合会(IFAC)电力与能源专业委员会:委员; (5)中国动力工程学会青年工作委员会:委员 (6)客座副编辑(Guest Associate Editor):国际自动控制联合会(IFAC)会刊Control Engineering Practice特刊:Active Disturbance Rejection Control in Power, Motion and Process Control Industry. (Special issue) https://www.sciencedirect.com/journal/control-engineering-practice/special-issue/10478ZLZMM8 (7)客座编辑(Guest Editor):Energies杂志专刊:Special Issue Modelling, Simulation and Control of Thermal Energy Systems https://www.mdpi.com/journal/energies/special_issues/Thermal_Energy_System (8)副编辑(Associate Editor):2017-2018年美国控制会议(American Control Conference); (9)分会主席:(Symposium Chair):2017 ASME/IEEE International Conference on Mechatronics & Embedded Systems & Applications (MESA) (10)程序委员会委员:2017-2020年中国控制会议。 (11)讨论组主席:(Session Chair),第16届国际控制、自动化及系统会议(ICCAS),“不确定性补偿”分会场 审稿人: Applied Energy, Energy Conversion and management, Automatica, IEEE会刊以及IFAC会刊等十多个国际主流期刊。

推荐链接
down
wechat
bug