当前位置: X-MOL首页全球导师 国内导师 › 鄭志豪

个人简介

學歷 美國紐約州立大學石溪分校 美國紐約州立大學,數學系,博士

研究领域

複幾何, 代數幾何

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. J.H. Teh, Harnack-Thom Theorem for higher cycle groups and Picard varieties, Transcation of AMS, 360(2008), 3263-3285. 2. J.H. Teh, Complexification of real cycles and Lawson Suspension Theorem, Journal of London Mathematical Society, 75(2007), 463-478. 3. J.H. Teh, Grothendieck standard conjectures, morphic cohomology and Hodge index theorem, Mathematische Zeitschrift, no.4, 260(2008), 849-864. 4. J.H. Teh, Motivic integration and projective bundle theorem in morphic cohomology, Mathematical Proceedings of the Cambridge Philosophical Society, 147 (2009), 295-321. 5. J.H. Teh, A homology and cohomology theory for real projective varieties, Indiana University Mathematics Journal, no.1, 59 (2010), 327-384. 6. J.H. Teh, Semi-topological cycle theory I , Pacific Journal of Mathematics, 259 (2012), 195-208. 7. J.H. Teh, Families of algebraic varieties parametrized by topological spaces, Communications in algebra, no.5, 41(2013), 1800-1824. 8. H.Y. Liao, J. H. Teh, Semi-topological Galois theory and the inverse Galois problem, Algebra Colloquium, no.4, 22 (2015), 687-706. 9. Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh, Aeppli and Bott-Chern cohomology for bi-generalized Hermitian manifolds and $d’d’’$-lemma, Journal of Geometry and Physics, 93(2015), 40-51. 10. J.H. Teh, Aeppli-Bott-Chern cohomology and Deligne cohomology from a viewpoint of Harvey-Lawson’s spark complex, Annals of Global Analysis and Geometry, no.2, 50(2016), 165-186. 11. Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh, $E_1$-degeneration and $d’d’’$-lemma, Commentationes Mathematicae Universitatis Carolinae, no.2, 57(2016), 155-162. 12. Jyh-Haur Teh, Chin-Jui Yang, Real rectifiable currents and algebraic cycles, arXiv:1810.00355. 13. Jyh-Haur Teh, Chin-Jui Yang, A characterization of real holomorphic chains and applications in representing homology classes by algebraic cycles, Complex Manifolds, 7(2020), 93-105. 14. Jyh-Haur Teh, Chin-Jui Yang, Bott-Chern homology, Bott-Chern differential cohomology and the Hodge conjecture, to appear in the Proceedings of the 8th ICCM.

推荐链接
down
wechat
bug