个人简介
教育和职业背景:
·四川大学物理系,本科(1992)。
·四川大学物理系,硕士研究生(1995)。
·香港大学物理系,哲学博士(2006)。
·2006.8--2008.1,新加坡南洋理工大学材料科学系,研究员。
·1995.7--现在,四川大学物理系,讲师(1997), 副教授(2002), 教授(2008)。
本科课程:《力学》(http://cc.scu.edu.cn/G2S/123.cc),《固体物理学》
研究领域
强关联磁性多体系统中的新颖集体量子态的规律及其调控手段,包括自旋体系的边缘及表面拓扑元激发、自旋液态、超固态等一系列与量子多体相变和临界现象相关的层展衍生现象。最近与合作者在简单的一维环阻挫量子横场伊辛模型中发现了一组新奇的低能量子态和由它们构成的无能隙激发谱能带,这些量子态在热力学极限下不发生自发对称破缺,不形成长程序,具有罕见的非局域长程关联函数和较高的基态纠缠熵,该类新颖量子态的其他相关物理效应还有待进一步深入发掘(J. Stat. Mech. 113102 (2016))。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Rigorous proof for the non-local correlation function in the transverse Ising model with ring frustration, Jian-Jun Dong, Zhen-Yu Zheng, Peng Li*, Phys. Rev. E 97, 012133 (2018). Preprint, arXiv:1703.07189.
Topological Fulde-Ferrell Superfluids in Triangular Lattices, Long-Fei Guo, Peng Li*, Su Yi, Phys. Rev. A 95, 063610 (2017). Preprint, arXiv:1701.04190.
Topological phases characterized by spin Chern number and skyrmion number in triangular Bose-Hubbard model, Long-Fei Guo and Peng Li*, Modern Physics Letters B 31, 1750221 (2017).
The a-cycle problem in XY model with ring frustration, Jian-Jun Dong and Peng Li*, Modern Physics Letters B 31, 1750061 (2017). Preprint, arXiv:1703.00595.
The a-cycle problem for transverse Ising ring, Jian-Jun Dong, Peng Li* and Qi-Hui Chen, J. Stat. Mech. 113102 (2016). Preprint, arXiv:1605.08910.
Fractional Mott insulator-to-superfluid transition of Bose–Hubbard model in a trimerized Kagome optical lattice, Qi-Hui Chen, Peng Li*, and Haibin Su*, , J. Phys.: Condens. Matter 28, 256001 (2016).
Diverse solid and supersolid phases of bosons in a triangular lattice, Qi-Hui Chen and Peng Li*, Chin. Phys. B 23, 056701 (2014).
The ground state phase diagrams and low-energy excitation of dimer XXZ spin ladder, Qi-Hui Chen, Long-Fei Guo, Peng Li*, Physica E 64, 188 (2014).
Stripe phases in a frustrated spin-1/2 dimer Heisenberg model, L.-F. Guo, Q.-H. Chen and P. Li*, International Journal of Modern Physics B 28, 1450143 (2014).
Ground-state and finite-temperature properties of spin liquid phase in the J1–J2 honeycomb model, Xiang-Long Yu, Da-Yong Liu, Peng Li, Liang-Jian Zou, Physica E 59, 41 (2014).
Topological edge states in the spin 1 bilinear– biquadratic model, Peng Li and Su-Peng Kou, J. Phys.: Condens. Matter 24, 446001 (2012).
Contractor renormalization group theory of the even-leg spin Tori, Qi-Hui Chen and Peng Li, Modern Physics Letters B 24, 2725 (2010).
Incommensurate phase of a triangular frustrated Heisenberg model studied via Schwinger-boson mean-field theory, Peng Li, HaibinSu, Hui-Ning Dong and Shun-Qing Shen, J. Phys.: Condens. Matter 21, 326005 (2009).
Fermionic representation of a symmetrically frustrated SU(3) model: application to the Haldane-gap antiferromagnets, Peng Li and Shun-Qing Shen, Phys. Lett. A 6, 041 (2009).
The Kagome Antiferromagnet: A Schwinger-Boson Mean-Field Theory Study, Peng Li, Haibin Su and Shun-Qing Shen, Phys. Rev. B 76, 174406 (2007).
Magnetic quantum phase transition of cold atoms in an optical lattice, Peng-Bin He, Qing Sun, Peng Li, Shun-Qing Shen, and W. M. Liu, Phys. Rev. A 76, 043618 (2007).
The SU(3) bosons and the spin nematic state on the spin-1 bilinear-biquadratic triangular lattice, Peng Li, Guang-Ming Zhang and Shun-Qing Shen, Phys. Rev. B 75, 104420 (2007).
Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean-field theory, Peng Li and Shun-Qing Shen, Phys. Rev. B 72, 214439 (2005).
Contractor renormalization group theory of SU(N) chains and ladders, Peng Li and Shun-Qing Shen, Phys. Rev. B 71, 212401 (2005).
Two-dimensional gapless spin liquids in frustrated SU(N) quantum magnets, Peng Li and Shun-Qing Shen, New J. Phys. 6, 160 (2004).
Spintronic Faraday rotation spectroscopy and geometrical modulation of spin current in an Aharonov-Casher ring, Zhongshui Ma, Peng Li, and Shun-Qing Shen, Phys. Rev. B 70, 125318 (2004).
Analytical approach to the Curie temperature, T_c(S,d), of spin-S Ising model on d-dimensional hypercubic lattice, Peng Li and Yongxin Song, Phys, Lett. A 289, 147 (2001).
Effective mean-field theory based on cumulant expansion (EMFC) in treating the transition of the Potts model on hypercubic lattice, Peng Li and Yongxin Song, Phys. Rev. B 63, 134419 (2001).