当前位置: X-MOL首页全球导师 国内导师 › 林福荣

个人简介

学历简介: 学士 1985-7 复旦大学 硕士 1988-7 复旦大学 博士 1995-9 香港大学 工作经历: 1988年7月 至 1991年11月 汕头大学 助教 1991年12月 至 1997年11月 汕头大学 讲师 1997年12月 至 2002年11月 汕头大学 副教授 2002年12月 至 现在 汕头大学 教授 担任课程: 本科生:《数值分析》、《矩阵计算》、《泛函分析》、《数学模型》、《运筹学》、《数值逼近》、《高等数学》、《概率统计》 研究生:《数值逼近》、《科学计算方法》、《矩阵计算》,《泛函分析》、《积分方程数值解》

研究领域

数值代数

承担项目: [ 1 ] 国家自然科学基金项目 分数阶扩散方程的高精度离散方法、快速算法及应用;2018/1/1 [ 2 ] 国家自然科学基金项目 一类Robin反问题的数值解法;2013/1/1—2016/12/31; [ 3 ] 其它课题 Robin反问题的数值解法;2011/6/1 [ 4 ] 省基金 Fredholm积分方程的快速求解法研究; [ 5 ] 省基金 Toeplitz方程组的预处理迭代解法及其应用; [ 6 ] 国家基金 求解Fredholm积分方程的带预处理的共轭梯度法; [ 7 ] 国家基金 弗雷德霍姆方程的预处理迭代解法;

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[ 1 ] 林福荣, 杨世伟;A two-stage method for piecewise-constant solution for Fredholm integral equations of the first kind;Mathematics; 5;2017/05/22 [ 2 ] 房喜明,林福荣,王超;Estimation of a regularisation parameter for a Robin inverse problem;East Asian Journal on Applied Mathematics; 7;325-342;2017/05/01 [ 3 ] 陈琼生,林福荣;A modified Nystrom-Clenshaw-Curtis quadrature for integral equations with piecewise smooth kernels;Applied Numerical Mathematics; 85;77-89;2014/11/15 [ 4 ] 马衍波,林福荣;Conjugate gradient method for estimation of Robin coefficients;East Asian Journal on Applied Mathematics; 4;189-204;2014/05/15 [ 5 ] 林福荣, 杨世伟; A weighted H1 seminorm regularization method for Fredholm integral equations of the first kind;International Journal of Computer Mathematics; 91;1012-1029;2014/05/01 [ 6 ] 林福荣, 杨世伟,金小庆; Preconditioned iterative methods for fractional diffusion equation;Journal of Computational Physics; 256;109–117;2014/01/01 [ 7 ] 林福荣, 杨海霞;A fast stationary iterative method for a partial integro-differential equation in pricing options;Calcolo; 50;313-327;2013/12/01 [ 8 ] 林福荣, 鲁鑫,金小庆;Sinc Nystrom Method for Singularly Perturbed Love's Integral Equation;East Asian Journal on Applied Mathematics; 3;48-58;2013/02/28 [ 9 ] 宣艳, 林福荣;Numerical methods based on rational variable substitution for Wiener-Hopf equations of the second kind;Journal of Computational and Applied Mathematics; 236;3528–3539;2012/08/15 [ 10 ] 林福荣, 王墀锡; BTTB preconditioners for BTTB systems;Numerical Algorithms; 60;153—167;2012/05/31 [ 11 ] 林福荣, 梁芬;Application of high order numerical quadratures to numerical inversion of the Laplace transform;Advances in Computational Mathematics; 36;267--278;2012/02/29 [ 12 ] 林福荣, 张德才; BTTB preconditioners for BTTB least squares problems;Linear Algebra and its Applications; 434;2285-2295;2011/06/01 [ 13 ] 梁芬, 林福荣; A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on the piece-wise polynomial interpolation;Applied Mathematics and Computation; 216;3073--3088;2010/07/15 [ 14 ] 林福荣, 吴国宝;Inverse Product Toeplitz Preconditioners for non-Hermitian Toeplitz Systems;Numerical Algorithms; 54;279—295;2010/06/30 [ 15 ] 林福荣;A fast numerical solution method for two dimensional Fredholm integral equations of the second kind;Applied Numerical Mathematics; 59;1709-1719;2009/01/01 [ 16 ] 林福荣;Block Preconditioners with Circulant Blocks for General Linear Systems;Computer and Mathematics with Applications; 58;1309--1319;2009/01/01 [ 17 ] 林福荣;Approximation BFGS methods for nonlinear image restoration;Journal of Computational and Applied Mathematics; 226;84-91;2009/01/01 [ 18 ] 林福荣;An explicit formula for the inverse of band triangular Toeplitz matrix;Linear Algebra and its Applications; 428;520-534;2008/01/01 [ 19 ] [ 20 ] Fu-Rong Lin and Wei-Fu Fang;A Linear Integral Equation Approach to the Robin Inverse Problem;Inverse Problems, 21 (2005), pp. 1757—1772; [ 21 ] Fu-Rong Lin, Michael K. Ng, and Wai-Ki Ching;Factorized Banded Inverse Preconditioners for Matrices with Toeplitz Structure;SIAM J Scientific Computing, 26 (2005), no. 6, pp. 1852—1870; [ 22 ] F. R. Lin and W. K. Ching;Inverse Toeplitz Preconditioners for Hermitian Toeplitz Systems;Numerical Linear Algebra with Applications, 12 (2005), no. 2-3, pp. 221—229; [ 23 ] Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng;Preconditioning Regularized Least Squares Problems arising from High-Resolution Image Reconstruction from Low-Resolution Frames;Linear Algebra and Its Applications, 301 (2004), pp. 149—168; [ 24 ] Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng;Fast Inversion of Triangular Toeplitz Matrices;Theoretical Computer Science, 315 (2004), no. 2-3, pp. 511—523; [ 25 ] F. R. Lin;Preconditioned Iterative Methods for the Numerical Solution of Fredholm Equations of the Second Kind;Calcolo, 40 (2003), no. 4, pp. 231—248; [ 26 ] Fu-Rong Lin and M. Ng;Super-Resolution Image Reconstruction with Estimation of Low-Resolution Frames;International Journal of Applied Mathematics, 13 (2003), pp. 99--117; [ 27 ] Fu-Rong Lin,Wai-Ki Ching,and Michael K. Ng;Discrete Wavelet Transforms for Toeplitz Matrices;Linear Algebra and Its Applications,370 (2003), pp. 269—285; [ 28 ] F. R. Lin, X. Q. Jin, and S. L. Lei;Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations;BIT, 43 (2003), pp. 136—149; [ 29 ] R. Chan, F. R. Lin, and C. F. Chan;A Fast Solver for Fredholm Equations of the Second Kind with Weakly Singular Kernels;Journal of Numerical Mathematics, 10 (2002), pp. 13—36; [ 30 ] F. R. Lin;Genuine-Optimal Circulant Preconditioners for Wiener-Hopf Equations;Journal of Computational Mathematics, 19 (2001), pp. 629—638; [ 31 ] F. R. Lin;Preconditioners for Block Toeplitz Systems Based on Circulant Preconditioners;Numerical Algorithms, 26 (2001), pp. 365—379; [ 32 ] F. R. Lin;Notes on Wavelet-like Basis Matrices;Computers and Mathematics with applications, 40 (2000), pp. 761—769; [ 33 ] F. R. Lin and M. K. Ng;Fast Preconditioned Iterative Methods for Convolution-type Integral Equations;BIT, 40 (2000), pp. 336—350; [ 34 ] R. Chan, F. R. Lin and W. F. Ng;Fast Dense Matrix Method for the Solution of Integral Equations of the Second Kind;Numerical Mathematics —a Journal of Chinese Universities, 7(1998), No.1, pp. 105—120; [ 35 ] F. R. Lin, M.K. Ng and R. Chan;Preconditioners for Wiener-Hopf Equations with High Order Quadrature rules;SIAM J. Numer. Anal., 34(1997),pp. 1418--1431; [ 36 ] F. R. Lin and M.K. Ng;Higher-order Quadratures for Circulant Preconditioned Wiener-Hopf Equations;BIT, 36 (1996), pp. 110—121; [ 37 ] R. Chan and F.R. Lin;Preconditioned Conjugate Gradient Methods for Integral Equations of the Second Kind Defined on the Half-line;J. of Computational Mathematics, 14 (1996), pp. 223—236; [ 38 ] M. Ng, F. Lin and R. Chan;Construction of Preconditioners for Wiener-Hopf Equations by Operator Splitting;Applied Mathematics and Computation, 72 (1995), pp. 77—96;

推荐链接
down
wechat
bug