个人简介
学历简介:
学士 1985-7 复旦大学
硕士 1988-7 复旦大学
博士 1995-9 香港大学
工作经历:
1988年7月 至 1991年11月 汕头大学 助教
1991年12月 至 1997年11月 汕头大学 讲师
1997年12月 至 2002年11月 汕头大学 副教授
2002年12月 至 现在 汕头大学 教授
担任课程:
本科生:《数值分析》、《矩阵计算》、《泛函分析》、《数学模型》、《运筹学》、《数值逼近》、《高等数学》、《概率统计》
研究生:《数值逼近》、《科学计算方法》、《矩阵计算》,《泛函分析》、《积分方程数值解》
研究领域
数值代数
承担项目:
[ 1 ] 国家自然科学基金项目 分数阶扩散方程的高精度离散方法、快速算法及应用;2018/1/1
[ 2 ] 国家自然科学基金项目 一类Robin反问题的数值解法;2013/1/1—2016/12/31;
[ 3 ] 其它课题 Robin反问题的数值解法;2011/6/1
[ 4 ] 省基金 Fredholm积分方程的快速求解法研究;
[ 5 ] 省基金 Toeplitz方程组的预处理迭代解法及其应用;
[ 6 ] 国家基金 求解Fredholm积分方程的带预处理的共轭梯度法;
[ 7 ] 国家基金 弗雷德霍姆方程的预处理迭代解法;
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[ 1 ] 林福荣, 杨世伟;A two-stage method for piecewise-constant solution for Fredholm integral equations of the first kind;Mathematics; 5;2017/05/22
[ 2 ] 房喜明,林福荣,王超;Estimation of a regularisation parameter for a Robin inverse problem;East Asian Journal on Applied Mathematics; 7;325-342;2017/05/01
[ 3 ] 陈琼生,林福荣;A modified Nystrom-Clenshaw-Curtis quadrature for integral equations with piecewise smooth kernels;Applied Numerical Mathematics; 85;77-89;2014/11/15
[ 4 ] 马衍波,林福荣;Conjugate gradient method for estimation of Robin coefficients;East Asian Journal on Applied Mathematics; 4;189-204;2014/05/15
[ 5 ] 林福荣, 杨世伟; A weighted H1 seminorm regularization method for Fredholm integral equations of the first kind;International Journal of Computer Mathematics; 91;1012-1029;2014/05/01
[ 6 ] 林福荣, 杨世伟,金小庆; Preconditioned iterative methods for fractional diffusion equation;Journal of Computational Physics; 256;109–117;2014/01/01
[ 7 ] 林福荣, 杨海霞;A fast stationary iterative method for a partial integro-differential equation in pricing options;Calcolo; 50;313-327;2013/12/01
[ 8 ] 林福荣, 鲁鑫,金小庆;Sinc Nystrom Method for Singularly Perturbed Love's Integral Equation;East Asian Journal on Applied Mathematics; 3;48-58;2013/02/28
[ 9 ] 宣艳, 林福荣;Numerical methods based on rational variable substitution for Wiener-Hopf equations of the second kind;Journal of Computational and Applied Mathematics; 236;3528–3539;2012/08/15
[ 10 ] 林福荣, 王墀锡; BTTB preconditioners for BTTB systems;Numerical Algorithms; 60;153—167;2012/05/31
[ 11 ] 林福荣, 梁芬;Application of high order numerical quadratures to numerical inversion of the Laplace transform;Advances in Computational Mathematics; 36;267--278;2012/02/29
[ 12 ] 林福荣, 张德才; BTTB preconditioners for BTTB least squares problems;Linear Algebra and its Applications; 434;2285-2295;2011/06/01
[ 13 ] 梁芬, 林福荣; A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on the piece-wise polynomial interpolation;Applied Mathematics and Computation; 216;3073--3088;2010/07/15
[ 14 ] 林福荣, 吴国宝;Inverse Product Toeplitz Preconditioners for non-Hermitian Toeplitz Systems;Numerical Algorithms; 54;279—295;2010/06/30
[ 15 ] 林福荣;A fast numerical solution method for two dimensional Fredholm integral equations of the second kind;Applied Numerical Mathematics; 59;1709-1719;2009/01/01
[ 16 ] 林福荣;Block Preconditioners with Circulant Blocks for General Linear Systems;Computer and Mathematics with Applications; 58;1309--1319;2009/01/01
[ 17 ] 林福荣;Approximation BFGS methods for nonlinear image restoration;Journal of Computational and Applied Mathematics; 226;84-91;2009/01/01
[ 18 ] 林福荣;An explicit formula for the inverse of band triangular Toeplitz matrix;Linear Algebra and its Applications; 428;520-534;2008/01/01
[ 19 ]
[ 20 ] Fu-Rong Lin and Wei-Fu Fang;A Linear Integral Equation Approach to the Robin Inverse Problem;Inverse Problems, 21 (2005), pp. 1757—1772;
[ 21 ] Fu-Rong Lin, Michael K. Ng, and Wai-Ki Ching;Factorized Banded Inverse Preconditioners for Matrices with Toeplitz Structure;SIAM J Scientific Computing, 26 (2005), no. 6, pp. 1852—1870;
[ 22 ] F. R. Lin and W. K. Ching;Inverse Toeplitz Preconditioners for Hermitian Toeplitz Systems;Numerical Linear Algebra with Applications, 12 (2005), no. 2-3, pp. 221—229;
[ 23 ] Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng;Preconditioning Regularized Least Squares Problems arising from High-Resolution Image Reconstruction from Low-Resolution Frames;Linear Algebra and Its Applications, 301 (2004), pp. 149—168;
[ 24 ] Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng;Fast Inversion of Triangular Toeplitz Matrices;Theoretical Computer Science, 315 (2004), no. 2-3, pp. 511—523;
[ 25 ] F. R. Lin;Preconditioned Iterative Methods for the Numerical Solution of Fredholm Equations of the Second Kind;Calcolo, 40 (2003), no. 4, pp. 231—248;
[ 26 ] Fu-Rong Lin and M. Ng;Super-Resolution Image Reconstruction with Estimation of Low-Resolution Frames;International Journal of Applied Mathematics, 13 (2003), pp. 99--117;
[ 27 ] Fu-Rong Lin,Wai-Ki Ching,and Michael K. Ng;Discrete Wavelet Transforms for Toeplitz Matrices;Linear Algebra and Its Applications,370 (2003), pp. 269—285;
[ 28 ] F. R. Lin, X. Q. Jin, and S. L. Lei;Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations;BIT, 43 (2003), pp. 136—149;
[ 29 ] R. Chan, F. R. Lin, and C. F. Chan;A Fast Solver for Fredholm Equations of the Second Kind with Weakly Singular Kernels;Journal of Numerical Mathematics, 10 (2002), pp. 13—36;
[ 30 ] F. R. Lin;Genuine-Optimal Circulant Preconditioners for Wiener-Hopf Equations;Journal of Computational Mathematics, 19 (2001), pp. 629—638;
[ 31 ] F. R. Lin;Preconditioners for Block Toeplitz Systems Based on Circulant Preconditioners;Numerical Algorithms, 26 (2001), pp. 365—379;
[ 32 ] F. R. Lin;Notes on Wavelet-like Basis Matrices;Computers and Mathematics with applications, 40 (2000), pp. 761—769;
[ 33 ] F. R. Lin and M. K. Ng;Fast Preconditioned Iterative Methods for Convolution-type Integral Equations;BIT, 40 (2000), pp. 336—350;
[ 34 ] R. Chan, F. R. Lin and W. F. Ng;Fast Dense Matrix Method for the Solution of Integral Equations of the Second Kind;Numerical Mathematics —a Journal of Chinese Universities, 7(1998), No.1, pp. 105—120;
[ 35 ] F. R. Lin, M.K. Ng and R. Chan;Preconditioners for Wiener-Hopf Equations with High Order Quadrature rules;SIAM J. Numer. Anal., 34(1997),pp. 1418--1431;
[ 36 ] F. R. Lin and M.K. Ng;Higher-order Quadratures for Circulant Preconditioned Wiener-Hopf Equations;BIT, 36 (1996), pp. 110—121;
[ 37 ] R. Chan and F.R. Lin;Preconditioned Conjugate Gradient Methods for Integral Equations of the Second Kind Defined on the Half-line;J. of Computational Mathematics, 14 (1996), pp. 223—236;
[ 38 ] M. Ng, F. Lin and R. Chan;Construction of Preconditioners for Wiener-Hopf Equations by Operator Splitting;Applied Mathematics and Computation, 72 (1995), pp. 77—96;