个人简介
周郭许,教授、博士生导师,广东工业大学“百人计划”特聘教授,广东省检测技术与自动化装置珠江学者特聘教授。主持或参与各类基金项目10余项(含国家自然科学基金2项、日本学术振兴会(JSPS)科研资助1项、广东省重大基础研究培育项目1项)。 迄今为止,在IEEE会刊等杂志上发表论文50余篇,其中IEEE会刊及杂志论文22篇,SCI收录39篇,SCI他引700余次,Google Scholar引用1800余次(H-指数22),6篇论文入选ESI前1%高被引。获得教育部科技成果自然科学奖一等奖(排名第二)和广东省科技奖励一等奖(排名第二)、广东省优秀博士学位论文奖、全国百篇优秀博士学位论文提名奖。论文曾获中日留学同学会 “华为技术奖”和“日中协会奖”。2017年入选广东省珠江学者特聘教授。
主持科研项目
1.国家自然科学基金面上项目,面向大数据的张量分解理论及随机化算法研究,63万元(直接费用)。
2.广东省自然科学基金 重大基础研究培育,面向大数据的张量分析及其应用,100万元。
3.广东省产学研合作项目,智能传感网共性技术的研发及其在车联移动环境下的应用,100万元。
4.日本科学技术振兴会(JSPS)青年项目,Common and Individual Feat ure Analysis and Its Applications in BCI(共享与私有特征分析及其在脑机接口中的应用),365万日元,己结题。
5.国家自然科学基金青年基金,平行因子分析研究及其在盲辨识中的应用,24万元,己结题。
研究领域
信号与智能信息处理,张量分析与多重线性代数,大数据分析,张量深度学习网络等。
信号与智能信息处理,张量分析与多重线性代数,大数据分析,模式识别与机器学习
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1.Guoxu Zhou, Qibin Zhao, Yu Zhang, Tulay Adalı, Shengli Xie, and Andrzej Cichocki, "Linked Component Analysis from Matrices to High Order Tensors: Applications to Biomedical Data", Proceedings of the IEEE. 204(2): 310-331, 2016. (影响因子9.237).
2.Guoxu Zhou, Andrzej Cichocki, Yu Zhang, and Danilo Mandic. "Group Component Analysis from Multi-block Data: Common and Individual Feature Extraction,” IEEE Transactions on Neural Networks and Learning Systems, 27(11): 2426-2439, 2016. (影响因子:6.108).
3.Guoxu Zhou, Andrzej Cichocki, Qibin Zhao, and Shengli Xie, "Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness," IEEE Transactions on Image Processing, vol.24, no.12, pp.4990-5003, Dec. 2015. (影响因子:4.828).
4.G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, Nonnegative Matrix and Tensor Factorizations: An algorithmic perspective, IEEE Signal Processing Magazine, vol.31, no.3, pp.54--65, May 2014. (影响因子:9.654).
5.G. Zhou, A. Cichocki, and S. Xie, Accelerated canonical polyadic decomposition by using mode reduction, IEEE Transactions on Neural Networks and Learning Systems, vol.24, no.12, pp.2051--2062, Dec. 2013,http://arxiv.org/abs/1211.3500.
6.G. Zhou, A. Cichocki, and S. Xie, Fast nonnegative matrix/tensor factorization based on low-rank approximation, IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 2928--2940, June 2012. (影响因子:4.300).
7.G. Zhou and A. Cichocki, Canonical polyadic decomposition based on a single mode blind source separation, IEEE Signal Processing Letters, vol. 19, no. 8, pp. 523--526, Aug. 2012.
8.Fengyu Cong#, Guoxu Zhou#, Piia Astikainen, Qibin Zhao, Qiang Wu, Asoke K Nandi, Jari K Hietanen, Tapani Ristaniemi, Andrzej Cichocki, "Low-Rank Approximation Based Non-Negative Multi-Way Array Decomposition On Event-Related Potentials," International Journal of Neural Systems, vol. 24, no. 8, 2014.
9.Q. Zhao, G. Zhou, T. Adali, L. Zhang and A. Cichocki. Kernelization of Tensor-based Models for Multimodal Data Analysis.IEEE Signal Processing Magazine, vol.30, no.4, pp.137--148, July 2013.
10.Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, and A. Cichocki, L1-regularized multiway canonical correlation analysis for SSVEP-based BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.21, no.6, pp. 887--896, 2013.